<div class="gmail_quote">On Wed, Feb 2, 2011 at 4:56 PM, Greg Troxel <span dir="ltr"><<a href="mailto:gdt@ir.bbn.com">gdt@ir.bbn.com</a>></span> wrote:<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">

For 1-of-4, and 50% reliability, you have a 1/16 odds of losing.<br>
For 10-of-40, you win if any 10 are up; my head is too foggy to do the<br>
math but it seems lossage is much less likely than 1/16.<br></blockquote><div><br></div><div>What, you can't evaluate 1 - 847660528 p^10 + 23118014400 p^11 - 307276941400 p^12 + </div><div> 2647309033600 p^13 - 16592954835600 p^14 + 80531140802112 p^15 - </div>
<div> 314574768758250 p^16 + 1015098413472000 p^17 - </div><div> 2756274164358000 p^18 + 6382950696408000 p^19 - </div><div> 12733986639333960 p^20 + 22050193314864000 p^21 - </div><div> 33325860350874000 p^22 + 44137259862696000 p^23 - </div>
<div> 51362108947363500 p^24 + 52594799562100224 p^25 - </div><div> 47411177489874000 p^26 + 37598406549704000 p^27 - </div><div> 26184604561401000 p^28 + 15967381365936000 p^29 - </div><div> 8489324426222640 p^30 + 3912131071992000 p^31 - </div>
<div> 1550404217451375 p^32 + 522929485728000 p^33 - </div><div> 148035185298000 p^34 + 34513346058048 p^35 - 6452815769400 p^36 + </div><div> 930135606400 p^37 - 97034823600 p^38 + 6520465600 p^39 - </div><div> 211915132 p^40 for p=.5 in your head?</div>
<div><br></div><div>It's 0.00034, which is 183 times smaller than 1/16.</div><div><br></div></div>-- <br>Shawn<br>