Message-locked Encryption and
Deduplication Security

Thomas Ristenpart
University of Wisconsin—Madison

Joint work with:

Mihir Bellare, Sriram Keelveedhi
UC San Diego

A motivating example g;% Dropbox
¥ _
@%{E myF'Ie 1010101'; User Filename Contents

User A A myFile 010101...
: Cloud B theFile 010101...
ﬁi\(z “theFile”, 010101... storage
= i
Dropbox saves on storage
User B

by storing (logically) only
one copy of file contents

A motivating example %:} DropbOX

User Filename Contents

WL myFile”, 010101...

A myFile 010101...
B theFile

S 7 “thefFile”, 010101... storage

&, L .

Dropbox saves on storage
by storing (logically) only
one copy of file contents

Deduplication
Find duplicate files and remove redundant copies

[Meyer, Bolosky 2011] ~50% space saved

%= Dropbox
EMC i
6 NetApp

bifcasa

IIIIIIIIIIIIIII

Dedup doesn’t work with
conventional client-side encryption

% Drophox
AT

@ —u H PN
@212 myFile”, M)

User A

Cloud Only stores
--- storage one copy
: - of M
v 7 “theFile”, M

User B

Dedup doesn’t work with »
conventional client-side encryption @\ DropbOX

v 7 “myFile”, C
C, < E(Ky M) @%Jf —s
A A’ S
User A Must store
... both
C,and C,

™
¥ —“theFile”, C
C, <& E(Ky, M) @;ﬁjﬁ; B

User B

E is a conventional, possibly randomized encryption algorithm

C, and C; are indistinguishable from independent, random bit strings

A big, expensive problem

Dropbox does server-side encryption with keys they
retain

TUESDAY, APRIL 12, 2011

How Dropbox sacrifices user privacy for cost savings

Christopher Soghoian,
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html

Companies must encrypt data before storing it or
backing it up, preventing deduplication

Can we build secure, client-side
encryption mechanisms that
support deduplication?

What’s been done here?

(Distributed) storage literature: Systems:
[Batten et al. '01] o Flud

[Douceur e\t al. '02] Convergent TahoeFS

[Cox et al. '02] : : :
(Cooley et al. "04] | encryption (CE): Ciphertite
[Killijian et al. “06] Encrypt M GNUnet
[Wilcox-O’Hearn, Warner *08] | under H(M)

[Storer et al. "08] Companies:
... (many more) bitcasa

Crypto literature:

(this space intentionally left blank)

The big idea (from CE):

message is “shared secret key material” used to derive keys

We formalize a new cryptographic primitive:
Message-Locked Encryption (MLE)

M KeyGen(M) > K Dec(K,C) M

Enc(K,M) C TagGen(C)

 Param generates a public system-wide parameter P
given to all algorithms (not shown for brevity)

 Param, Keygen, Encrypt may be randomized

* TagGen, are deterministic

Using MLE with deduped storage

Ka < KeyGen(M) @%il/f “myFile”, C,

C, <= Enc(K,,M) User A g Storage server:

___ T <— TagGen(C,)
T'<— TagGen(Cy)

Kg & Keygen(M) I; “theFile”, C, If T=T then

C, < Enc(Kg, M)

store C,
else

--- store C,, Gy

Get “theFile”
CA

>

M < Dec(Kg,C,)

UserB ¢

K,, Kg can be encrypted and stored using conventional scheme

Using MLE with deduped storage

Important functionality properties required:

Non-triviality: |K| << |[M|
Tag correctness: T=T for ciphertexts for same message M
Efficient search: O(log d) search for duplicate over d ciphertexts

Decryption correctness: any key works for any ciphertext (same M)

(see paper for formal details)

[Douceur et al. 2002]

Convergent encryption ettt ‘96 (clarke et . ‘00

[Wilcox-O'Hearn "00]

Deterministically encrypt M under cryptographic hash H(M)
CE as an MLE scheme:

Dec(K,C):
KeyGen(M):
ret K <—H(M) K rl\gtT/ID(K’C) M
M
Enc(K,M): _
C—E(K,M) I{fole(gc)' T
ret C

E is deterministic symmetric scheme E (decryption via D)
(e.g., CTR-mode AES with constant V)

Non-triviality: |K| = 128 bits while M can be arbitrary length

Used in TahoeFsS,

Hash-and-CE (HCE1) scheme o2

Dec(K,C || T):
KeyGen(M): K
M <—D(K,C
ret K< H(M) et M (K,C) M
M
Enc(K,M):
C<E(K,M) | TagGen(C||T): T
T<H(K) Ret T
retC||T

In paper two new schemes:
e Hash-and-CE 2 with tag check (HCE2)
 Randomized CE (RCE) that achieves single-pass MLE

Why? All three schemes are faster than CE

Message privacy: the bad news

LetS={M,, ..., M_ } be known set of possible messages

Let C <~ Enc(KeyGen(M i), M _i) for random i and give adversary C

L\

Works for any tag-correct
scheme

Runs in time O(m)

BruteForce(C):
T<+-TagGen(C)
Fori= 1 tom do
K. % KeyGen(M,)
C <—Enc(K., M.)
T, <— TagGen(C)
T = T, then Observed in [Zooko "08]

Return M. for CE.

Privacy for MLE schemes only possible
for unpredictable messages

Message privacy: the gOOd NEeWs
New privacy definitions PRV-CDA PRVS-CDA

Best possible subject to limitation of brute-force attacks

Game PRVS-CDA
b % {0,1}

M <M

K & KeyGen(M)
C[1] & Enc(K, M)
C[0] ﬁ {o}l}lc[lll
b’ <& A(C[b])

ret (b =b’)

If set of possible messages is too
large, no attacker can distinguish
between ciphertext and random
bit string

Weaker PRV-CDA left-or-right
indistinguishability notion in paper

Similar to notions for deterministic/searchable PKE [BB0’07,BFOR’08,BFO’08]
hedged PKE [BBNRSS'09]

Analysis of fast MLE schemes

In-use CE and variant HCE * Using AES-NI with AES256 for hashing

and CTR mode on Intel Core i7-970.
2 new schemes HCE2 and RCE TR mode by itself 1.2 cpb. |M| = 4 KB

KeyGen + Enc + | PRV-CDA | PRVS-CDA
TagGen time*

11.8 cpb
HCE 6.6 cpb Yes Yes
HCE2 6.6 cpb Yes Yes
RCE 6.5 cpb Yes Yes

We provide proofs of security assuming hash is random oracle (RO)

Duplicate faking attacks and MLE inteﬁrit%

Storage server:
$ ’
CA <— FakeCtxt(M,M) ”myFiIe", CA T & TagGen(CZA)
>

User A T’<— TagGen(C2;)
““ If T=T then
Ky < Keygen(M) vy _ ., store C,
Cs < Enc(Kg,M) 6@@\5[; theFile”, C, >\| else
__ Jeer8 store C,, Gy
¥ _ /!
Nj [Get “theFile” .
M’ << Dec(K,,C,) 6@};{% > Service stores /
UserB . Cl, just CA

1) Adversary knows M to be uploaded by B
2) Make fake C, s.t. T=T', but decryptsto M’ I=M
3) User B gets back corrupted file later!

Duplicate faking attacks and MLE inteﬁrit%

Storage server:
$ ’
CA <— FakeCtxt(M,M) ”myFiIe”, CA T & TagGen(CZA)
>

User A T'<— TagGen(C2;)
""" If T=T then
Attack against HCE: store C,

else
Encrypt(K,M): FakeCtxt(M,M’): ctore C. C
C < E(K,M) K < H(M) ALE
T<+H(K) C,<E(K,M’) .
ret C || T T < H(K) Service stores
retC|I T just C,

. 4

Attack in [Storer et al. '08], but vulnerabilities not realized

Weaker attack would just make decryption fail

Analysis of fast MLE schemes

In-use CE and variant HCE * Using AES-NI with AES256 for hashing

and CTR mode on Intel Core i7-970.
2 new schemes HCE2 and RCE TR mode by itself 1.2 cpb. |M| = 4 KB

KeyGen + Enc + | PRV-CDA | PRVS-CDA
TagGen time*

11.8 cpb
HCE 6.6 cpb Yes Yes
HCE2 6.6 cpb Yes Yes
RCE 6.5 cpb Yes Yes

Tag consistency (TC) — prevent replacement, but not failures

Strong tag consistency (STC) — prevent both

HCE2, RCE use new technique, guarded decryption, to get TC

Theory: standard model MLE?

1) Constructions assuming existence of other primitives

Correlation-intractable hash <: Deterministic PKE
[Goyal, O’Neill, Rao "11] [Bellare, Boldyreva, O’Neill, '07]

\ 7/

2) Constructions for special message spaces

Sample-Extract-Encrypt
Message spaces with high entropy density

A quick digression

Crossover applied-theory research flavors:

SA-MLE &
New theoretically-sound DUpLESS
practical crypto
Refining old models /\
due to new attacks Integrating known
MLE theory into applications
L)
Figuring out what What | talked
fegplih?jve been Formal security about last
rying 10 do analyses of year Y,

deployed systems

A quick digression

Crypto literature can lag behind innovations happening in
other academic communities or (gasp) industry

A totally biased corpus of relatively recent examples:

Topic / 1%t paper Who got there first Results of initial crypto work

Keywrap NIST, IEEE S/MIME

[RS "06]

Deterministic PKE

[BBO "07] industry (?)

Format-preserving NBS,

encryption [BRRS '09] Security community,
Industry

HSM-friendly AE Industry

[BFSW "12]

Message-locked
encryption [BKR "12] Industry

Database community,

~9 years

~5 years

~ 28 years

Distributed systems,

~ 1vyear

~ 11 years

Standardized scheme & security
defs used more broadly

New schemes, new definitions
used widely, open problems and
many follow-up papers

Widely-deployed standard,
swathe of theory papers,
applications in stegonagraphy

Analyze scheme made public at
last year’s meeting

Formalizations, new schemes,
new settings, more?

MLE leaks nothing about messages...

if messages are unpredictable

Attacker recovers M given Enc(Keygen(M),M)
in time O(m) when m is # of possible messages

o

1) In some cases m = 2
2) Hard for defenders to determine m!

[Warner, Perttula

One idea: users share secret key K ™50 ks g

@ o« PN/
Ky < Keygen(K||M) @;\/ﬁ; myFile”, C, R
Cy < Enc(K,,M) s

User A
Cloud

storage

Now brute-force attacks (provably) disappear...

..until K is exposed

We introduce server-aided MLE (SA-MLE)

KeygenS(K) = > KeygenCl(M)
=) ¥ “myFile”, C
Ka @g!é ! —
C, & Enc(K,,M) usera
@ o H n
KeygenS(K) = > KeygenCl(M) @’;\E theFile”, Cy
KB User B

Cy < Enc(KyM)

Ciphertexts from users of same KS can be deduped

KS can be private (authenticate clients) or possibly public

We introduce server-aided MLE (SA-MLE)

KeygenS(K) = > KeygenCl(M)

!
K

A:;m
N

Key $
Server C, < Enc(K,,M) usera

(KS)

storage

We give concrete scheme
using Oblivious PRF protocol compromised _| w/ private K
(RSA-based blind sigs KS No attack exists
[Camenisch et al. "07]) Storage 0(2'%%) computations
for KS and CE for rest User + storage O(m) KS queries
KS + storage O(m) computations

We provide formal models and analyses

A new expression:
s it Real-World-Worthy (RWW)?

Key
Server
(KS)

Who can run the KS?

Is encryption fast enough? KeygenS(sk) =——= KeygenCl(M)

Does it work with existing storage systems? <! DfOpbOX

‘ NetApp mozy

DUpLESS (DuplicateLess Encryption for Simple Storage)

APl-compatible wrappers for storage service)4 Dropbox
plus a KS protocol

User secret key K’

“C, key” , Cllo
6“\) L “myFile”, M | 1-5€Y 2

(/!\4 > DupLESS "Cl.CtXt” , CA
User A

DLput(K’,F,M)

C, can be
K., K, , K3 <—KDF(K’) Eey deduped
Ky <& KeygenCl(M) erver .
C, & Enc(K,,M) (KS)

C, 7 DE(KF)
C, < SE(K,,K,)
0 HMAC(K,, C,|| C, |,)

Storage overhead: 3L + 120 bytes where L is filename size

DE is deterministic encryption
SE is randomized CTR mode

DUpLESS (DuplicateLess Encryption for Simple Storage)

APl-compatible wrappers for storage service)4 Dropbox
plus a KS protocol

User secret key K’
. “C,.key”, C,llO

6“\) “myFile”, M | 1B s 2

"’“4\ > | DupLESS “C,.ctxt”, C,
User A
KS implementable in 20-line | Key SAgan bde
Python script running on | Server caupe .
top of Apache on EC2. (KS) '

Simple HTTP(S)-based protocol

KS performs one RSA exponentiation per request

DUpLESS (DuplicateLess Encryption for Simple Storage)

Only store requires KS interaction
KS unavailable -> fails safe to conventional encryption

Other API features supported/able
(filename search, listing, sharing, paths, etc.)

Requires no changes to storage system and no
understanding of dedup mechanisms
Optimizations possible (e.g., single storage request)

DupLESS: Performance of put

|
DupLESS
516 | =--- Normal
5
=
@)
Q
Gcb) 9l4 |
o yu—
—
o v
S
12 |
g 2
=
- T — T 1
= gof L — - 1
28 \ \ \
20 24 28 212 216

File size (KB)

DupLESS: Performance breakdown of put

Component | Time in milliseC(?nds
Min Max | Median
Getting the KS Key 371 384 | 374 (9.1%)
Hashing 24 25 | 22 (0.5%)
Client-side RSA 6 6 | 6(0.1%)
KS interaction 324 322 | 328 (8.0%)
TLS handshake 240 245 | 243 (5.9%)
Server-side operations 6 9 | 7 (0.2%)
Transmission 30 82 | 81 (0.2%)
Encryption 47 50 | 49 (1.2%)
Upload (SSput) 3452 | 4368 | 3676 (89.7%)
Sum total 3870 | 4802 | 4099

Performed for 1 MB file

DupLESS: Overhead of put and get

Relative median time

1.6

1.4

1.2

—+— Upload
- + = Download

File size (KB)

KS throughput (on EC2 ml.large instance)

Replies per second

5,000

[N

-

3,000 |-

2,000 |-

—

-

]
]
)

o
o
o

—— Average

Maximum
—— Minimum
SD

0 1,000 2,000 3,000 4,000 5,000

Requests per second

Replies per second

5,000

N
o
o
o

3,000

2,000

—
]
]
)

—— Average

Maximum
—— Minimum
SD

\ \
0 1,000 2,000 3,000 4,000 5,000

Requests per second

Summary: Encryption that supports dedup

Formal foundations

Message-Locked Encryption (MLE)
and new security definitions

Security analyses of
CE and variants

Proofs or attacks for existing
schemes and new variants

Theoretical foundations

Standard-model constructions (for
restricted message spaces) and
black-box from other primitives

Preventing offline
brute-force attacks

Sever-aided MLE (SA-MLE) and
the DupLESS system

Zey ¥ a & oS VR
Real World Crypto 2013

Debrief

“I have 256-bit stupidity” (paraphrased)
--Adam Langley, RWC 2013

“It’s brainless, it’s just programming”
--Nigel Smart, RWC 2013

RWC'13 Open Questions

Improving RNG designs and requirements? (Walker / Heninger)

Improved onioning AE schemes for Tor? (Mathewson)

How to deal with overblocking of Tor IP addresses? (Mathewson)

Concrete assumptions that suffice for RO-model schemes? (Bellare)

Revisiting crypto protocols based on many-to-few trust models? (Adida)

Can we make crypto more supportive of counter-cryptanalysis? (Stevens)

Thinking about MPC over real programs (not circuits)? (Smart)

Constant time algorithms and tools for evaluating constant timed-ness?
(Langley)

Theory of implementation complexity / ecosystem? (McGrew, Langley)

Side-channel attacks against GCM? (Langley)

RWC'13 Open Questions

Soutions for bad pinning problem? (Perrin)

Designing protocols to be easily updatable in unilateral manner?
(Rescorla)

More useful theory for cryptographic agility? (Paterson)

How do we get trust agility and have it be fast? (Applebaum)

Send me any interesting ones | missed!

RWC'13 Take-aways

Implement your algorithms (Rogaway / Langley)
Kill CBC (Langley and so many others)

Go beyond the paper (Langley)

Crypto gives bad demos (Spies)

Unilateral versus bilateral deployment (Langley /
Rescorla / Gueron)

Do
Real World Crypto 2013

Please send slides (PDF) to Dan (dabo@cs.stanford.edu)

Big thanks to Dan for all the local arrangements!

And to Lynda Harris for logistics

And to our sponsors!

Real World Crypto 2014

Please give us general feedback!

* Venue for next year or subsequent years?
— Stay in Bay Area? East Coast? Europe?
— Send us thoughts on this

e Actively looking for more sponsors
— Talk to any of us!

