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Abstract

Distributed filesystems are an increasingly popular technology, especially amongst

cloud computing providers. Distributed filesystems aggregate the storage and process-

ing power of multiple computers into a coherent filesystem, then allow users to store

data on that filesystem. Distributed filesystems must address a number of challenges to

provide the fault-tolerance and availability that users expect. We study file allocation,

one such challenge. We present servers of happiness, an algorithm for file allocation

in the widely used open-source Tahoe-LAFS distributed filesystem. We compare the

servers of happiness algorithm to its predecessor, the shares of happiness algorithm.

The servers of happiness algorithm improves on the shares in two important ways, and

should make an appealing addition to Tahoe-LAFS at some point in the future.
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Chapter 1

The Filesystem as an Abstraction

Informally speaking, a filesystem is the set of algorithms and storage structures responsible

for low-level file management on a computer. An essential task for such a system is writing

data to physical storage in such a way that it can be retrieved on-demand. Filesystems

commonly have other features as well. For example, filesystems may need to associate

metadata with files, or to provide a mechanism for access control. We will only consider

storage and retrieval of files in our work, however; these other features are mostly orthogonal

to the issue of robustness and efficiency, and we do not wish to cloud our analysis by

considering them.

More formally, we consider a filesystem F as the following operations.

• A set P of allowable paths, representing possible storage locations.

• An operation STOREF(path ∈ P,data ∈ {0, 1}
∗) → {0, 1} that associates the data

data to the path path, returning 1 if the operation was successful or 0 otherwise.

• An operation RETRIEVEF(path ∈ P) → {0, 1}
∗ that returns the data associated to

path, or nothing if no data has been stored at path.

Each operation is parameterized with F, which we use to represent the state associated

with a filesystem. In a filesystem on a single disk, F would include the single disk. For

a filesystem spread over many disks or many computer systems, F would include those

computer systems. To understand the need for a state variable, consider an intuitive, high
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level implementation of STOREF and RETRIEVEF. We expect that STOREF will write its

data parameter somewhere, and we expect that RETRIEVEF will retrieve some data from

somewhere, where somewhere is a piece of physical storage. In essence, F encapsulates and

formalizes the notion of somewhere.

1.1 Centralized filesystems

For common and traditional filesystems, the state used by the STORE and RETRIEVE op-

erations all exists on a single physical disk. We will refer to such filesystems as centralized

filesystems; the motivation behind this designation is the availability characteristics that re-

sult from using a single physical disk to store data, metadata, and everything else necessary

for the filesystem to function. We will discuss these characteristics later.

The ext3 filesystem

ext3 [5], an evolution of ext2 [6], is a common filesystem on GNU/Linux systems. We will

briefly examine, at a high level, how STOREext3 and RETRIEVEext3 are implemented.

Generally, an ext3 filesystem is organized in a familiar tree structure corresponding to a

directory hierarchy. Some of the contents of the directory hierarchy are created and modified

by users, while others are managed by the operating system (e.g., the device hierarchy).

Since we’re considering the user-facing STOREext3 and RETRIEVEext3, we will consider only

the common case of files and directories. Both files and directories are defined by inodes,

special objects in the filesystem that contain metadata about files (e.g., type, permissions

and size) as well as pointers to the disk blocks that store the data associated with the file.

Directories are implemented as files with specifically-formatted and defined data; that is, a

mapping of filenames in the directory to the inodes associated with those files. [2]

Using this information, it is easy to see how RETREVEext3 would work. Given a path,

say, /etc/passwd, it would read the etc entry of the root directory node and figure out

which inode corresponds to etc. It would then read the the passwd entry from the etc

directory. Finally, it would retrieve the contents of the data blocks associated with the

passwd inode and return them to the caller. If STOREext3 is invoked on an existing path,
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then it behaves in much the same way: it traverses the directory tree until it finds a leaf

node, then it writes data to the data blocks associated with the leaf node, allocating new

blocks as necessary. Similarly, if a new file is created, STOREext2 must traverse the directory

tree until it finds the parent directory of the new file, select an inode to store metadata

about the new file, and then allocate blocks to store the data for the new file.

Evolutions of centralized filesystems

Technologies like RAID [14], ZFS [16], and LVM [17] allow conceptual filesystems to straddle

disk boundaries, so that the availability of the filesystem is not necessarily tied to the

availability of one disk. These, then, are not centralized filesystems in the same way as

ext3. We argue that they are still conceptually centralized, though, since their availability

cannot generally be decoupled from a single computer system. Their availability, in other

words, is still dependent on a single and relatively small conceptual entity with a non-

negligible probability of failure. Decentralized systems, as we’ll see shortly, are designed

not to depend on any one disk, computer, or conceptual entity with a high probability of

failure.

Weaknesses of centralized filesystems

As mentioned, centralized filesystems generally rely on a single physical disk for the per-

sistence of the state they need to operate correctly. This makes filesystem availability

dependent on the functioning and availability of a single physical disk, whose failure is suf-

ficient to render the entire filesystem unavailable. If a filesystem is stored entirely on disks

within one computer, as in RAID, LVM, or ZFS, the filesystem’s availability is dependent

on the availability of the computer. These availability limitations make it difficult to use

centralized filesystems to implement robust storage systems that are resilient to regional

catastrophes, or even somewhat widespread power and network failures. Some level of ro-

bustness can be achieved, of course – we can keep offsite backups, for example – but these

solutions are orthogonal to the filesystem itself and generally require human intervention

and induce some level of temporary availability loss while, e.g., backups are restored or a
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failover site is activated. Decentralized filesystems, as we’ll see, are designed to scale be-

yond a single computer, which yields a pleasant and configurable level of robustness while

preserving the relatively simple filesystem abstraction.

1.2 Improving availability with a decentralized filesystem

Suppose that we want to define a filesystem F with generally good availability properties in

the face of common and less common failure scenarios. We will assume that the filesystem

has a set C of computers that it can use. We suppose that each c ∈ C supports STOREc

and RETRIEVEc operations that are similar to those used in the previous section, and

that F may use these as it sees fit. Intuitively, these operations might be implemented on

a given computer by a local filesystem like ext3. Since computers and their supporting

infrastructure can and do fail at points, we’ll analyze various implementations of F in the

context of failures of some of the computers in C. We’ll assume that computers in C fail

with some probability, and that the failure of a computer is expressed in binary terms – the

computer is either working perfectly or not working at all.

How to evaluate the availability and efficiency of a filesystem

In the following sections, we will reason about the availability properties of a distributed

filesystem. We will also consider the space used to store a particular bit pattern in the

filesystem. We will see that there is usually a tradeoff between the availability of a piece of

data and the amount of space that is used to store a particular piece of data: specifically,

we typically get better availability properties if we store more bits than we were asked to

store. We will first establish various ways to evaluate the performance of a filesystem in

terms of availability and storage utilization. This will give us a consistent, objective way

to evaluate and compare our constructs later.

As stated above, we wish to consider storage utilization. When considering storage

utilization, we will consider the number of bits that must be stored on a particular filesystem

in order to store a bit pattern of length n, ignoring constant factors due to disk and

local filesystem structures. Using this measurement, we can compare two filesystems by
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comparing the number of bits that each uses to store a particular bit pattern. For example,

a filesystem that must write 3n bits to store an n-bit datum is inferior in terms of storage

to a filesystem that only writes 2n bits to store the same datum.

We also wish to consider availability. When evaluating decentralized filesystems, we will

consider three availability states.

First, we will consider the availability of a decentralized filesystem as a whole. Let F be

a filesystem. We will say that F as a whole is available if there exists a path p in the set

of valid paths such that STOREF and RETRIEVEF work correctly; that is, STOREF(p,data)

associates data with p, and RETRIEVEF(p) = data. A filesystem that is available as a

whole is minimally functional or partially available; it may work correctly for some paths

but may return missing data or no data for other paths, or it may work correctly for all

paths.

We will also consider total availability. We say that a filesystem F is totally available if

STOREF and RETRIEVEF work correctly for all possible paths. A filesystem that is totally

available may be regarded as working normally.

Finally, a filesystem Fmay be entirely unavailabile, in which case STOREF and RETRIEVEF

do not work correctly for any path.

These three availability states can be thought of as a continuum of availability whose

endpoints are total unavailability and total availability. No system may be better than

totally available, or worse than totally unavailable; systems in between these two are par-

tially available. We may compare partially available filesystems F1 and F2 by comparing the

number of paths for which they function correctly, ranking systems with more functioning

paths higher than those with fewer functioning paths. When comparing filesystems, we

will also reason about the difficulty of going from one state on this continuum to another.

Since we will primarily be speaking of failure, most of our state transitions will be down the

continuum, i.e., from totally available to partially available, or from partially available to

unavailable. We will usually express this by considering the number of participating servers

that must fail before availability is degraded, and will rank filesystems by comparing these

numbers. For example, if F1 will go from totally available to partially available if 3 servers

fail, and F2 will go from totally available to partially available if 5 servers fail, then we will
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regard F2 as superior to F1 in terms of availability.

Viewing a centralized filesystem in our terminology

We can view a simple centralized filesystem Fc in these terms. Specifically, we select a c ∈ C

that is held constant for all operations in Fc. Intuitively, this c is the computer that we’re

using — if the centralized filesystem is on your notebook computer, then c is your notebook

computer. Then we define STOREFc and RETRIEVEFc as follows:

STOREFc(path,data) = STOREc(path,data)

RETRIEVEFc(path) = RETRIEVEc(path)

Then the filesystem Fc essentially delegates all of its tasks to the underlying filesystem

on c.

First, note that Fc is relatively efficient in terms of space. For an input datum of length

n, it stores n bits. Short of compressing or damaging the data, Fc cannot store fewer than

n bits to store an input datum whose length is n bits.

Since Fc is defined in terms of a single computer, its availability properties are very

closely tied to those of a single computer. By earlier assumption, the availability of a

particular computer is binary, so there is no middle ground in Fc between total availability

and total unavailability. In other words, only one failure — the failure of c — is necessary

to cause Fc to lose all of the data it is responsible for storing.

A simple distributed filesystem

We will now consider a filesystem that is very much like Fc, but with a simple elaboration

to make it distributed. Instead of selecting one computer c to store data, we will select a

set N ⊆ C computers to store data on. We will call this filesystem Fs, and will define it as

follows:
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STOREFs(path,data) = STOREfindN(path)(path,data)

RETRIEVEFs(path) = RETRIEVEfindN(path)(path)

We have defined an internal function, findN. findN selects a computer from N given a

path path, and does so consistently: i.e., path1 = path2⇔ findN(path1) = findN(path2).

findN is essentially a hash function whose buckets are the computers inN. Intuitively, when

presented with some data to be stored at a path, Fs chooses a computer from the set of

acceptable computers N and stores the data on that computer.

We see first that Fs is as efficient as the centralized filesystem, since, for each n-bit

datum, n bits are stored in the filesystem.

Unlike in Fc, there is a distinction in Fs between total availability and partial availability.

Fs is partially available at time t if at least 1 computer in the initial set N is still working

at time t, since, assuming an efficient findN, there is some path p whose data is stored

on the remaining server. All of the computers in N must be broken before Fs is totally

unavailable. Then, assuming that ∣N∣ > 1, Fs offers better resistance to total unavailability

than Fc. Fc and Fs both require only one server to fail before they degrade from a totally

available state, so Fs is neither better nor worse than Fc in that regard. Then, since Fs can

tolerate the failure of more servers than Fc before becoming totally unavailable, and since

Fs can tolerate the same number of server failures as Fc before degrading from a totally

available state, we say that Fs offers better availability characteristics than Fc. Fs is also no

worse than Fc in terms of storage utilization.

This construct is fairly similar to a data structure called a distributed hash table. Dis-

tributed hash tables are conceptually similar to more familiar hash tables, in that they

map some key to a location. In a normal hash table, the location might be a linked list, if

the hash table is a bucket chaining hash table. In a distributed hash table, the location is

typically a computer on a network. Distributed hash tables that wish to avoid relying un-

duly on one or a few constituent computers typically include algorithms run on data-storing

clients to find the computers responsible for storing those data, and other algorithms for
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network maintenance, including allowing nodes to join or leave a network, and algorithms

to periodically balance load between nodes. Distributed hash tables have been used to

implement trackerless BitTorrent [11]. Popular distributed hash tables include Chord [15]

and Kademlia [12].

Improving the simple distributed filesystem with replication

The primary weakness of Fs is that its total availability — the property that it works

correctly for all paths — is dependent on the correct functioning of all of its constituent

computers. Fc and Fs share this property, but the effect is more pronounced with Fs since the

probability that any one computer of a large number of computers will have broken at some

point in time is greater than the probability that one specific computer will have broken

at some point in time. We can address this by decoupling the availability of data stored

at any one path from the functioning of a particular computer. In this way, the failure of

one or a few computers does not necessarily render the filesystem partially unavailable. We

do this by storing multiple copies or replicas of data within the filesystem: this process is

called replication.

Fr, a distributed filesystem employing replication, is very similar to Fs. We can define

it as follows:

STOREFr(path,data) = for p ∈ findN(path), STOREp(path,data)

RETRIEVEFr(path) = for p ∈ findN(path), RETRIEVEp(path)

We’ve changed the internal function findN(path) to return a set of computers rather

than a single computer. The size of the set returned by find controls the amount of

replication present in the network, and might be a configuration option. We will refer to

this size as r. We then store the data associated with that path on each of those computers.

Retrieval operates in the expected way: each of the computers returned by the locator

function is asked for the data it has stored at a given path.
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We first note that Fr is not as efficient in terms of space as Fc or Fs. For some n input

bits, Fr stores r ⋅ n bits. Recall that Fs and Fc both store n bits which, assuming r > 1, is

smaller than r ⋅n.

When we consider partial availability, Fs is slightly superior to Fr. Note that Fs may

still operate normally for some path if only one computer is still operating. Fr may retrieve

the data associated with a particular path if only one computer is still operating, but at

least r computers must be operating for it to store data at a particular path. So, in order

for Fr to be partially operational by our terminology, at least r computers must be online

at once. When we consider total availability, though, Fr is superior to Fs. Recall that Fs

may enter a state in which it is nonfunctional for some paths if only one server goes offline.

Fr can retrieve data for all paths if up to r−1 of its constituent systems are offline. In other

words, Fr trades space efficiency for a greater margin of error before it degrades into only

partial availability. Specificially, trading an additional n bits of redundancy allows us to

increase by 1 the number of servers that can fail before some files become unavailable.

Fr is similar to the Dynamo construct [8], developed by Amazon.com and used internally

for various pieces of infrastructure. Dynamo deals with concepts of write consistency that

Fr does not.

We can view a storage operation as a number of individual requests, each directing a

selected storage server to store a copy of the input data. We would like for the overall

storage operation to “return” quickly, so that programs using Dynamo need not block on

storage requests for a long time, but we would also like to ensure write consistency. A

storage operation is consistent if each of the storage servers selected to hold a copy of some

data successfully stores a copy of the data. By achieving write consistency, we can ensure

that future attempts to read data stored at a path return the data that we stored, and

not some other data that was there previously or no data at all. An inconsistent state can

occur if the storage operation fails to successfully store a data on one of the selected servers;

for example, if there are network issues, or if one of the servers is temporarily down for

maintenance. To control the tradeoff between responsiveness and consistency for later reads

and updates, Dynamo allows applications to tune the number of servers that must return

successfully before a write can be called successful. Applications for which consistency is
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very important might set this to be equal to the number of replicas, while applications in

which performance is more important would set it to a smaller value.

Using erasure coding to temper the space tradeoff

In the previous section, we saw how introducing some inefficiency in terms of storage space

made Fr tolerate more server failures before degrading from a state of complete availability.

Specifically, storing additional replicas of data allows the system to tolerate more server

failures before losing the data. Erasure coding allows us to get more bang for our space

tradeoff buck. Erasure coding relies on an abstract function that takes in some arbitrary

data, and outputs n pieces of that data such that k ≤ n distinct pieces are sufficient to restore

the original input data when fed into a different (and known) function. The combination

of a particular k and n is often called a k-of-n encoding, since k of the original n pieces are

required to reconstruct some given input data.

Lets consider Fe. Fe is like Fr, except that a file is erasure coded before being replicated.

Let n and k be the parameters of the erasure code. Note that the space tradeoff now

depends on n and k. In general, we have n
k
bits of data stored on the grid for every input

bit. Formally, we define STOREFe as follows:

Input: path, data

D = ec(data,n, k)

for all x ∈ findn(path) do

Choose a d ∈D

STOREx(path,d)

D =D ∖ {d}

end for

and we define RETRIEVEFe as:

Input: path

Choose R ⊆ findn(path), ∣R∣ ≥ k

D = {}

for all s ∈ R do
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D =D ∪ {RETRIEVEs(path)}

end for

return decode(D,n,k)

Intuitively, the store operation takes input data, produces erasure-coded chunks of that

input data, then puts one chunk on each server. The retrieve operation selects k servers from

the set of servers that might have stored data for the input path, retrieves the erasure-coded

chunks from those servers, then reassembles the data and returns it. We’ve also introduced

two new private helper functions. ec(data,n, k) erasure-codes some input data using the

parameters n and k. decode(D,n,k) takes as input a set of at least k erasure-coded chunks

and decodes them to the original input data.

To understand the availability and efficiency implications of erasure coding, we must

closely compare it to a system using replication. Specifically, we wish to see what happens

when r,n, and k are set so that Fe and Fr store the same amount of data for a given amount

of input data. Then n
k
= r, and n = k ⋅ r. If we choose n and k such that the erasure coding

is not simply replication (as would be the case if k = 1), then we have that n > r.

Note that, by assumption, we have that r = n
k
. For m bits of input data, Fr stores m ⋅ r

bits and Fe stores n
k
⋅m bits of input data, so Fr and Fe are equivalent in terms of storage

utilization.

Next, we consider the number of server failures that Fr and Fe can tolerate before failing

completely. In the case of Fr, at least r servers must operate in order for storage and

retrieval to work for some paths. In the case of Fe, at least k such servers must operate.

There is no clear winner here, since we don’t have a relationship between k and r — all we

know is that k > 1.

The big difference between Fe and Fr is in total availability. Note that Fr can tolerate

the failure of r − 1 servers while remaining fully functional. Fe can tolerate the failure of

n − k servers while remaining fully functional. Note that

r − 1 =
n

k
− 1

(r − 1)k = n − k
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Since k ≥ 1, Fe can tolerate at least twice as many server failures as Fr before potentially

losing data, despite the fact that it stores the same amount of data for a given input bit

pattern. In other words, Fe allows us to make a distributed filesystem that can tolerate

many more server failures than Fr before degrading from a state of total availability.

This construct is similar to Tahoe-LAFS [9], a distributed filesystem that offers fault-

tolerance as well as confidentiality that is independent of the provider of data storage. In

other words, data stored in a Tahoe-LAFS grid remains secret even from the operators of

the computer systems that store it. This is achieved through pervasive use of encryption.

Tahoe-LAFS also uses capabilities for access control. We will examine Tahoe-LAFS in

depth later in this thesis.

An example

To better understand the interplay of the variables used in previous sections, we will now

analyze a more concrete distributed filesystem construct. Suppose that we have a set of

computers N such that ∣N∣ = 20. In other words, we have 20 computers that we can use to

build a filesystem.

First, we will consider Fc, a centralized filesystem. As before, Fc is unaffected by the

size of N. It will store n bits if asked to store an n-bit bit pattern, will function with total

availability if its only computer is online, and will be totally unavailable if one computer

fails.

Next, consider Fs, a simple distributed filesystem. Like Fc, it stores n bits if asked

to store an n-bit bit pattern. It will be partially available so long as no more than 19

computers fail, but will only be totally available if all 20 computers are running.

Next, consider Fr, a distributed filesystem using replication. We’ll set r to 3, which

means that each bit pattern will be replicated three times on computers in N. Clearly, Fr

will store 3 ⋅ n bits when asked to store an n-bit input file. Fr can be guaranteed to be

totally available if up to 2 servers fail, and will remain partially available if no more than

17 servers fail.

Finally, we consider Fe. As in the previous section, we will choose n and k such that
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Table 1.1: Comparison of Fc, Fs, Fr, and Fe

Filesystem Expansion Factor Failures before partial loss Failures before total loss

Fc 1 0 1
Fs 1 0 s

Fr r r − 1 s

Fe
n
k

n − k s − k

n
k
= r; n = 15, k = 5 satisfies this constraint. Note that Fe, configured as such, will store

the same number of bits for an input bit pattern as would Fr. Fe is partially available if no

more than 15 computers have failed at a particular time, and Fe is totally functional if no

more than 10 computers have failed at one time.

The following table summarizes the availability properties of the filesystem designs ex-

amined in this section. s is the number of servers. r is the replication parameter for Fr.

n and k are erasure coding parameters for Fe, k > 1, set such that n
k
= r. Recall that

n − k ≥ 2(r − 1), as demonstrated above.

1.3 Examining implicit assumptions about decentralized

filesystems

In the analysis above, we examined the storage utilization and availability characteristics

of four example decentralized filesystems. By their design, these examples make some

assumptions about how to store data on computers that compose a decentralized filesystem.

These assumptions are shared by the practical allocation strategies that we will study later.

We will now state these assumptions explicitly, analyze them, discuss why we wish to make

them, and discuss any downsides associated with them.

Share allocation assumptions

In our analysis, we discussed two filesystems, Fr and Fe, that can use more than one computer

to store some input data. Specifically, Fr stores copies of the entire input data, while Fe

stores erasure-coded shares of the input data. We’ll call the copies and erasure-coded shares

output data; they are the data that Fe and Fr write as output when asked to store something.
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Both Fe and Fr attempt to store no more than one piece of output data on any one storage

server; in other words, they attempt to spread out their output data . This is a deliberate

design decision; clearly, Fe and Fr could be allowed to store more than out piece of output

data on a given storage server. We will now examine the consequences of changing this

assumption.

First, we consider Fr; specifically, we consider what happens when we invoke STOREFr(path,data)

for some path and data. Suppose that r is the number of replicas placed by Fr. As

above, Fr will store a copy of data on each of r different storage servers. This means that

RETREIVEFr(path) = data as long as no more than r − 1 of those storage servers have

failed. More generally, Fr can be said to be totally available if no more than r − 1 storage

servers have failed. Now suppose that STOREFr(path,data) is permitted to store more

than one of its r copies of data on a given storage server. Let u be the number of distinct

storage servers used by STOREF, and assume that u < r. Then this modified form of Fr can

tolerate up to u−1 failures before RETRIEVEF(path) /= data. In general, the modified form

of Fr can tolerate U − 1 failures before degrading from a state of total availability, where

U =min({u ∶ p ∈ P}); the smallest number of distinct storage servers storing replicas for a

particular path. In other words, allowing Fr to store multiple replicas on a single storage

server reduces Fr’s ability to tolerate server failures while remaining in a state of guaranteed

total availability. Replication of this sort does not provide any benefits when we consider

degradation from partial availability to total unavailability. Recall that Fr can be regarded

as partially available if at least one storage server with a replica of the data associated

with some path is online. This does not change if we allow storage servers to store multiple

replicas of input data. In summary, allowing Fr to store multiple replicas on a single storage

server harms the ability of the filesystem to tolerate server failures before degrading from

a state of total availability, and doesn’t improve Fr’s ability to resist degrading into a state

of total unavailability. In fact, the availability characteristics of an Fr that stores r replicas

but doesn’t guarantee that they will be stored on distinct storage servers are the same as

the availability characteristics of an Fr that does guarantee that replicas will be stored on

distinct storage servers, but which has a smaller replication constant — U — and therefore

stores less data. So there is little reason to allow Fr to store more than one replica on each
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storage server.

Next, we consider Fe. Let n and k be erasure coding parameters. Recall that Fe can

tolerate the failure of up to n − k storage servers before degrading from a state of total

availability. Now suppose that STOREFe(path,data) is allowed to place more than one

distinct erasure coded piece onto a particular storage server. As above, this reduces the

ability of Fe to tolerate the failure of storage servers without degrading from a state of total

availability; specifically, if u is the number of distinct storage servers that have stored a

share for a particular path, and u < n, then we can no longer guarantee total availability

if we lose more than u − k storage servers. The tradeoff is less clear in this case because

it depends on which storage servers fail. Suppose that n = 10, k = 3,u = 9 for some path

p. Then one of the 9 storage servers has two distinct shares. We can then retrieve our

file from only two surviving storage servers as long as one of them is the storage server

storing two distinct shares. In other words, we can no longer guarantee that we are in a

state of total availability if any more than U−k storage servers fail, but we are not certain

to be in a state of partial availability at that point, since some servers may still collectively

have enough shares to restore the file. Similarly, we may degrade from a state of partial

availability to a state of total unavailability if fewer than k servers are running, but cannot

say for certain. So, for Fe, allowing storage servers to store more than one share harms the

ability of Fe to tolerate server failures without degrading from a state of total availability

in general, does not improve the ability of Fe to tolerate server failures without degrading

into a state of total unavailability in general, but may allow some individual files to better

tolerate server failures, depending on distribution characteristics. Depending on use case,

there may be an argument for allowing more than one share on each storage server, but we

prefer to make our general availability characteristics as good as they can be, and will favor

spreading shares amongst as many storage servers as possible in this work.

Storage utilization assumptions

We also assume that Fe and Fr will not store more data than they produce; in other words,

than is implied by their replication or erasure coding parameters. For example, if r = 4
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in Fr, we are not allowed to store more than 4 replicas of the original input data on the

distributed filesystem. In the case of Fe, it means that we are not allowed to store any

erasure coded share more than once.

The reasoning for this requirement is less straightforward than that for spreading shares

out amongst many storage servers. Note that we can achieve an availability improvement

by storing more data. If r = 4, and we store five replicas on five distinct servers, then the file

can tolerate the loss of four servers instead of five before read availability is compromised.

Using selective double placement of shares in an Fe-style filesystem allows us to tolerate the

failure of n − k + 1 or more storage servers.

This requirement is more for usability and consistency than any clear availability cri-

teria. Space utilization in distributed filesystems is an important issue. Many commodity

computing services charge based on the amount of space used [1] [4]. So, in a practical

distributed system, it is important for the user to be able to reason about space usage in

a precise way. Explicit erasure-coding or replication parameters provided to the user allow

the user to do this. We argue that it is not appropriate for an algorithm to second-guess

the user’s choices, and say instead that the user will increase n,k, or r if they want more

data stored on the filesystem.

1.4 Analysis and conclusions

In the previous sections, we’ve shown how slight elaborations on intuitive distributed filesys-

tems can change their availability and space efficiency properties. In particular, we’ve seen

how two common distributed filesystems trade space-efficiency for stronger guarantees of

availability in the presence of failed computer systems. Generally, filesystems that make

this tradeoff can operate without degraded availability in the presence of more computer

failures than systems that do not make such a tradeoff. We discussed erasure coding, and

examined its impact on a distributed filesystem. We saw how the use of erasure coding

allows a distributed filesystem to tolerate the failure of far more computers than the use of

simple replication when configured to use the same amount of space to use an input file.

We concluded by making some of the implicit assumptions in our examples explicit, and
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analyzing their implications.
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Chapter 2

Practical Constraints to Idealized

Distributed Filesystems

In chapter 2, we reasoned about filesystem availability by seeing how tolerant example de-

centralized filesystems were to the failure of some of their constituent computer systems.

Though informative, these conclusions represent an idealized viewpoint of a distributed

filesystem. Specifically, they present the operation of placing data at a high level of ab-

straction. They also assume that there are enough constituent computers to place shares

in such a way as to validate assumptions about the availability of files. Problems with this

level of abstraction emerge when we wish to consider implementation decisions. In this

chapter, we will discuss some problems which motivate our work.

2.1 Too few servers

Implicit in our discussion in chapter 3 is the assumption that there are enough available

computer systems for each STORE operation to complete successfully. Consider Fr, and

let r = 3. Our reasoning about the availability properties of Fr holds only if there are at

least 3 available servers for STOREFr to write to, since STOREFr must store each of the

3 replicas on a distinct server for our conclusions about availability to be valid. One of

the challenges in designing a practical distributed filesystem is to design protocols that

intelligently and consistently handle cases where there are fewer servers than a user might
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have expected when configuring the distributed filesystem. Consider a simple example

involving Fr. Suppose that r = 3, and suppose that Fr has two computers available when

STOREFr is invoked. In this case, we cannot give better availability properties than the user

would get with r = 2.

There are a few ways that STORE can behave in situations like the one above. Most

obviously, we may refuse to store the data at all. This makes it easy for the user to reason

about the availability of recently-placed files, since the filesystem will never knowingly place

files in a way that delivers availability characteristics other than those implied by the user’s

configuration. On the other hand, it does not do a good job of handling transient failures. If

one or two servers are temporarily offline due to a network fault or are unable to accept data

due to a disk failure or disk capacity issues, the user may wish the network to place data

anyway on the assumption that some automated process will later redistribute the replicas

in an optimal way: this may be seen as preferable to having, say, an automated backup

process not back up data at all if one or two systems is down temporarily. We can respect

the user’s desire for graceful, tempered failure by separating the replication parameter

(which controls how available the file can be under optimal conditions) from an availability

parameter. Then the STORE operation will try to place data in a way that delivers optimal

availability characteristics given the configured replication parameters, but won’t fail so long

as the data can be placed in such a way as to deliver availability characteristics consistent

with the availability parameter. In subsequent sections and in the rest of this chapter, we

will consider systems with a separate availability parameter.

2.2 Efficient distribution of erasure-coded shares

For replication, it is straightforward to allocate shares across a collection of servers even in

suboptimal conditions and with separate availability and replication parameters: we simply

choose some number of servers to receive a replica, and check to see whether there are

enough servers to meet our goals. If we consider Fe instead of Fr, the problem becomes

more complicated.

In Chapter 3, our reasoning about the availability properties of a distributed filesystem
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using erasure coding relies on the assumption that no share is allocated to more than one

server. Consider, for example, a 5-server distributed filesystem and an erasure code with

k = 3,n = 5. If we store each of 5 shares on a different server, then the system can tolerate

the failure of 2 servers without compromising the availability of the file. If we store shares

1 and 2 on separate servers and then store share 3 on the 3 remaining servers, then the file

is unavailable if server 1 or server 2 stop operating; in other words, the filesystem cannot

necessarily tolerate the failure of even one randomly selected server.

So, when allocating shares, we must ensure not only that we have enough servers but

also that we aren’t storing one share on more than one server, or that whatever overlap

exists does not diminish the availability properties. We must also continue to do this even

if there aren’t enough servers available to store every erasure-coded share of the file, or else

fail to store the file.

2.3 Dealing with existing shares and repair operations

In large-scale distributed systems, it is generally assumed that there is some amount of

churn amongst the computers that make up the system; that is, some computers will fail and

leave the system forever, while others will join the system. To account for this, distributed

filesystems have a notion of “repairing” a file. We may regard a file as damaged if it is

missing replicas or shares, or if those replicas or shares are allocated in an inefficient or

unreliable way, or for other reasons. A damaged file is repaired by replacing the parts of

it that are missing and/or by moving its replicas or shares around in order to improve

availability characteristics.

Generally, a repair operation can be viewed as a special case of a STORE operation;

specifically, a STORE operation begun when there are already pieces of a file in the filesys-

tem.

Repairing is a fairly straightforward operation in the case of Fr, since we need only

count the number of servers that have a replica of a particular bit pattern and compare

that to the replication parameter, uploading new replicas as necessary to bridge the gap.

Repairing is more difficult for Fe. We cannot simply count servers, since a group of servers
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may have multiple copies of the same share, and may therefore contribute no more to overall

availability than one server with that share. Nor can we count shares alone, since a single

server having all of the shares does not offer very good availability. One alternative is to

count the number of pairwise-disjoint (server, share) tuples in the filesystem, and, based

on that, place new shares as necessary.

Consistent with our focus on storage utilization, we’d also like for storage and repair

operations to require a small amount of computation and to avoid placing unnecessary data

onto the filesystem. Placing any data onto a distributed filesystem involves various costs,

primarily in terms of network traffic, latency, and storage space consumed on the storage

servers.

2.4 Summary

When considering Fe, it is apparent that it is difficult to describe, in implementation-level

terms, the STOREFe operation while also behaving sensibly in situations in which there are

not enough servers, or in which there are already shares in place. Our work is concerned

with the evaluation of such algorithms.
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Chapter 3

An Introduction to Tahoe-LAFS

In a previous chapter, we discussed at a simplified level the design of idealized types of

distributed filesystems. Toward the end, we discussed a distributed filesystem that imple-

ments replication through the use of erasure codes, and the impact that the use of erasure

codes has on the availability of the filesystem. We will now elaborate on that by presenting

Tahoe-LAFS, a distributed filesystem that uses this technique.

3.1 Mojo Nation, Mnet, and Freenet

Tahoe-LAFS can be seen as a simplified version of an earlier product called Mojo Nation

[20].

Mojo Nation was the product of a startup from the early 2000s [20]; it was meant to

be a general content delivery network, backup system, or other tool for entities who could

contribute heterogeneous computers to one network, usually on behalf of their users; an

analogy from today is a BitTorrent swarm used to deliver content from a publisher like a

film studio or Linux distribution to users who want that content. The enduring novelty

of Mojo Nation was the use of electronic currency, called Mojo, to achieve load balancing

within the network.

A Mojo Nation network is composed of three types of nodes, provided by users: a block

store, which stores data for other clients, a relay, which forwards traffic into the network

from nodes that are stuck behind NATs or firewalls, and a content tracker, which serves as
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a sort of search engine for the network [19]. These nodes all contribute some amount of disk

space, network capacity, or processor power to the grid as a whole. A trusted third party

currency server, run by whoever controls the grid, keeps track of these contributions by

recognizing them with Mojo. Transactions within the network, such as searching or placing

a new file, involve the exchange of Mojo. By creating a market that maps closely to the

contributions one makes to the network, Mojo Nation gives users who contribute a lot to

the network the ability to demand more of the network than other users. For example, users

who have accumulated a lot of Mojo can store more data than other users, search more

quickly than other users, and cut to the front of the line for popular content by offering

more Mojo to providers of these services than other clients are able to.

As a filesystem, Mojo Nation is very simple. It supports immutable files; that is, files

which are not modifiable once uploaded. Files are addressed using an identifier computed

from the contents of the file, and are encrypted with a Content Hash Key or CHK, which is

an encryption key derived from a hash of the file contents. Files are encoded using standard

erasure coding algorithms to replicate them efficiently across the network, and to enable, in

conjunction with segmentation of source files, massively parallel or swarming downloads.

When the startup behind Mojo Nation failed, its code was released under the GPL as

the Mnet project, which was functionally similar to Mojo Nation except for the lack of

micropayments [20]. Development of Mnet has ceased. One employee of the startup went

on to create BitTorrent, which uses a simpler subset of the functionality of Mojo Nation

(specifically, swarming downloads, content trackers, and an implied digital currency metric

that clients generally follow) to great effect in distributing files. Others went on to create

Tahoe-LAFS, a simplification of Mojo Nation that has evolved toward a filesystem, though

one without digital currency, swarming downloads, or relay servers.

3.2 Tahoe-LAFS

Tahoe-LAFS is essentially a key-value store. Uploading data to a Tahoe-LAFS grid returns

a key associated with and derived from the data, which can then be used to retrieve the

data later [22]. Tahoe-LAFS is distinguished from distributed hash tables like Chord [15] or
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Kademlia [12] in its substitution of a very limited sort of centralization and simple lookup

and storage protocols for more complicated algorithms that ensure efficient routing of search

and store requests throughout a large decentralized network. It is, in other words, more

simplistic than Chord, Kademlia, or other academic distributed hash tables. Simple systems

like Tahoe-LAFS are sometimes called NoSQL databases. A NoSQL database, generally

speaking, is a data store that supports a very limited notion of querying; typically asking

for an object or set of objects by an identifier, and also not supporting or using tables or

other relational tools in the same way as traditional SQL databases. NoSQL databases have

simple maintenance protocols and are typically designed to tolerate the failure of one or

more nodes that comprise them, characteristics shared by Tahoe-LAFS. However, Tahoe-

LAFS operates at a lower level than most NoSQL databases, and does not natively support

associations beyond associating some arbitrary data to a key. Tahoe-LAFS is most similar

to systems like Dynamo [8] and Cassandra [10], though its use of erasure coding, strong

cryptography, and capability-based security differentiates it from these projects.

The fundamental entity in a Tahoe-LAFS system is called a grid. A grid is defined

by an introducer, a set of storage servers, and a set of clients [22]. When clients first

connect to the grid, they communicate with the introducer, which returns to them a list

of storage servers. When storage servers first connect to the grid, they communicate with

the introducer, which informs all currently connected clients about the storage servers and

adds them to its internal list of storage servers. The simplistic nature of the introducer

allows the grid to operate without it if it fails; currently connected clients will not learn of

any new storage servers, and new clients will not be able to connect, but the existing clients

and existing storage servers will be able to communicate normally.

Security is a pervasive characteristic and design goal of Tahoe-LAFS. The most im-

portant consequence of this is the notion of provider-independent security, which, roughly,

states that the security of data stored within a Tahoe-LAFS grid is not dependent on the

security or maliciousness of the storage servers, introducers, or other clients within that

grid. This is achieved through the use of strong cryptography on all data stored within the

grid as they are uploaded by the client. Specifically, AES-256 is used to encrypt the data,

and Merkle trees using SHA-256d as a hash function are used to validate their integrity
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after encryption [18]. The overall key used to access stored data is called a capability; that

is, it is both an identification and authorization token for a particular resource. In Tahoe-

LAFS, capabilities contain the data necessary to locate stored data, verify its integrity,

and to decrypt it. Capabilities in Tahoe-LAFS may also be attenuated; for example, a

read capability (which delegates to its holder the ability to read the resource to which it

refers) may be attenuated to a verify capability, which delegates to its holder the ability

to verify the integrity of the ciphertext of the resource to which it refers without giving

the authority to read the plaintext of the resource. In general, it is not possible to easily

reverse the attenuation of a capability. Capabilities simplify key management by coupling

access control and resource identification into one identifier.

In Tahoe-LAFS, a capability for an immutable file looks like:

URI :CHK: key : hash : k : n : s i z e

where key is the encryption key used to decrypt the contents of the file, and hash is

the root of a Merkle tree computed on the ciphertext of the file, and is used to verify the

integrity of the ciphertext when it is downloaded. k and n are erasure coding parameters,

discussed below. size is the size of the original, unencoded ciphertext.

To account for unreliable storage servers, Tahoe-LAFS replicates data. In most other

decentralized storage systems, this means that whole copies of the datum being stored are

placed on more than one storage server. The robustness and reliability improvements are

clear: so long as one of the storage servers that initially received a copy of the datum

remains online and working until the datum is retrieved, the datum is still available. One

downside to replication is that the amount of space required to store a particular datum

increases in direct proportion to the number of replicas that are made of the datum. In a

direct replica system, to tolerate the failure of any n storage servers, it is necessary to store

complete replicas of the data on at least n + 1 storage servers. Tahoe-LAFS addresses this

cost somewhat by the use of erasure coding [22]. Tahoe-LAFS uses zfec, an efficient and

fast implementation of Reed-Solomon codes [21]. In zfec, all n pieces are the same size,

which is N
k
bits if the source data is N bits. As in other erasure codes, the combination of

particular n and k are often called a k-of-n encoding.
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Tahoe-LAFS is a good test platform for our experiments because it is designed to tolerate

misbehaving or adversarial storage nodes and grid participants. At the same time, it lacks

a coherent approach to addressing the sort of reliability issues that we wish to examine.

Finally, it is free, open-source software with which the author is familiar.
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Chapter 4

Share Allocation Strategies in

Tahoe-LAFS

We will now discuss two share allocation strategies used at various points in Tahoe-LAFS,

described in chapter 4. We will give a high-level overview of each strategy, then discuss

algorithms to verify the availability characteristics implied by each strategy and to place

shares such that the availability characteristics implied by each strategy are satisfied. These

algorithms will guide our implementation when we simulate the performance of the share

allocation techniques in subsequent chapters. Readers interested in viewing the source code

implementation of these algorithms are encouraged to consult the appendix.

4.1 How Tahoe-LAFS controls for availability

Tahoe-LAFS follows the model described in previous chapters, in that it decouples the

ideal replication state of a file, as implied by the n and k encoding parameters, from the

minimum replication required in order for a file storage operation to be successful, which we

will refer to as h [13]. The user may configure n, k, and h to satisfy their own availability

requirements. In various versions of Tahoe-LAFS, h has meant different things. In this

chapter, the abstractions and algorithms we discuss will essentially be defining h, as it was

defined in various versions of Tahoe-LAFS.
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4.2 Shares of happiness

Initially, h was a shorthand for “happiness”, which in turn referred to the idea of shares

of happiness [3]. In the shares-of-happiness file availability test, the file is regarded as

acceptably available (“happy”) if at least h of its erasure-coded shares are recoverable

from the distributed filesystem; otherwise, the file is not sufficiently available (i.e., it is

“unhappy”) and the upload operation is not successful.

As discussed earlier, a test for shares of happiness is simple: we must determine how

many shares were placed on computers within the distributed filesystem, then compare that

number with a preconfigured threshold. If the number is smaller than the threshold, then

availability will be unacceptably low and the file upload operation should be aborted. In

terms of implementation, we can generate a set of shares that we expect to produce, then

remove elements from that set until we either run out of cooperating computer systems

(e.g., because some have failed or are full) or until all shares are placed. The size of this set

at the end of share placement is what we must compare with the preconfigured threshold.

Shares of happiness uses a simple, phase-based share placement algorithm. An uploader

keeps track of shares that it has to place, shares that it has successfully placed and their

locations, and servers that may accept shares, sorted according to a file-specific permutation

key. An uploader also distinguishes between unused storage servers, which have not yet

been asked to store a share by the uploader, and already-used storage servers, which have

accepted a share when asked to do so by the uploader.

Share placement occurs as a loop, generally controlled by the number of shares yet to

be placed. At each iteration, an unallocated share is selected for storage on some storage

server. Next, a storage server is selected. If there are unused storage servers, then an unused

storage server is selected; otherwise, a previously-used storage server is used. A message

is sent to the storage server directing it to allocate space for the share. If the request is

successful, then the share is removed from the list of unallocated shares and the server is

stored in a list of servers with allocated shares. If the request does not result in an error but

is not accepted (likely due to insufficient storage space on the server), the server is removed

from further consideration and the share is left in the list of unallocated shares. If the
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result does result in an error (likely due to some unexpected problem or bug on the storage

server), then the share is left in the list of unallocated shares, the server is removed from

further consideration, and any shares previously allocated to the server are added to the list

of unallocated shares, since the protocol assumes that the server has failed and cannot be

trusted to honor previously accepted storage requests. Along with an answer to the share

allocation request, each storage server will return a set of the shares that it already holds.

If this set is nonempty, then the uploader will remove the shares in the set from the set of

shares that it needs to place. This is of benefit during file repair operations, in which some

number of shares already exist on the distributed filesystem; specifically, it minimizes the

number of shares that the uploader must place in order to complete the repair operation.

As mentioned, the shares of happiness process operates in phases. During the first

phase, the uploader attempts to store each share that it chooses on an unused storage

server. The first phase ends when there are no more shares to place, in which case the

upload is declared successful, or when there are no more unused storage servers to place

shares on, in which case the second phase begins. The second phase attempts to place shares

one-at-a-time onto storage servers, but uses used storage servers instead of unused storage

servers. The second phase, like the first phase, ends either when there are no more shares

to place, in which case the upload process stops, or when there are no more storage servers.

In the latter case, the protocol enters the third phase, during which shares are allocated

proportionally amongst all of the used storage servers that are still accepting shares. For

example, if there are four shares remaining in phase 3, and 2 storage servers available to

accept shares, then each step of the loop will attempt to place two shares on each storage

server. The third phase continues until all shares have been placed or until there are no

more servers available to accept shares; in either case, the end of the third phase is also

the end of the share placement process. When the share placement process concludes, the

shares of happiness algorithm is executed. If the share allocation is acceptable, then the

upload is successful, otherwise, it is unsuccessful.
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4.3 Servers of happiness

In current implementations of Tahoe-LAFS, a slightly more complicated availability test

called servers-of-happiness is used [3]. Servers of happiness was initially motivated by

shortcomings in the shares of happiness test. The name servers of happiness is due to

Zooko, one of the developers of Tahoe-LAFS. The idea to use a bipartite graph as the

health test for servers of happiness is due to David-Sarah Hopwood, another Tahoe-LAFS

developer [7]. We will examine the servers of happiness test, and develop a share allocation

algorithm that improves upon shares of happiness by using the bipartite graph idea to

motivate share placements.

The shares of happiness availability test is not able to distinguish between a share

allocation in which all n shares are stored on a single storage server and a share allocation

in which each of the n shares are placed on a different server, even though these two

allocations have completely different availability characteristics. This shortcoming is due

to the simplistic design of shares of happiness; specifically, that it is concerned only with

the number of shares that are placed. In our reasoning about availability characteristics

in an earlier chapter, we presented availability characteristics primarily defined by the

number of servers holding shares of a file. We reasoned about the number of servers that

must fail before a filesystem can no longer be guaranteed to be totally available, and the

number of servers that must be available in order to guarantee partial functionality. For

practical reasons, we must also consider the number of distinct shares generated from a

particular file that are available on the filesystem. To see why this is, consider a file with

encoding parameters k = 3,n = 10. Note that the file is unrecoverable if one of its shares is

replicated once on each of 10 storage servers, but that the same file is recoverable if each

of its 10 shares is replicated once on its own storage server. The shares of happiness share

placement algorithm is designed to place each share on a different storage server, yielding

a share allocation in which the number of storage servers is also the number of available

shares. In this case, counting the number of distinct shares available is sufficient as an

availability test, since it implicitly considers the number of servers when it considers the

number of shares. The problem with shares of happiness becomes apparent when the shares
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of happiness share allocation algorithm fails to achieve a share allocation whose availability

characteristics allow the number of shares to model the number of servers, since, as above, it

cannot distinguish between situations in which the availability characteristics are acceptable

and situations in which the availability of the file depends entirely on the functioning of

one server. Intuitively, our solution to this problem is to explicitly consider the number of

servers alongside with the number of shares.

Instead of shares, servers-of-happiness deals with the size of a bipartite matching be-

tween servers and shares. The idea of using a bipartite This has many attractive properties.

First, and most relevant to the shortcomings of the shares of happiness technique, servers

of happiness takes the number of servers storing shares of a file explicitly into account

when determining its availability characteristics. If h = 7, then the file cannot be deemed

acceptably available unless its pieces are stored on at least 7 distinct storage servers. Using a

bipartite matching also ensures that the availability measured by the uploader is not affected

by servers storing more than one share each, since only one share on each storage server

is counted toward the matching. Additionally, the bipartite matching will not overcount

shares stored on multiple storage servers. To see why this is important, consider a file

encoded with k = 3,n = 4, and stored such that pieces 1 and 2 are each stored on one

storage server and piece 3 is stored on two storage servers. Note that this layout can only

tolerate the loss of one of the two servers storing piece 3 without losing read availability,

which is a weaker availability guarantee than if each of the four storage servers stored a

unique piece of the file (in which case we could tolerate the failure of any single storage

server without losing read availability).

At its core, servers of happiness uses a bipartite graph to determine whether a proposed

placement of the erasure-coded shares of an input file would yield suitable availability

characteristics. Specifically, it uses a bipartite matching constructed in a bipartite graph

induced by the share placement and constructed as follows:

• Let G = (Sh ⊍ Sr, E) be a bipartite graph

• Let Sh be the set of all erasure-coded shares generated by a storage operation.

• Let Sr be the set of all servers that may accept shares for a storage operation.
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• Let E = {(sr, sh) ∶ server sr stores store a copy of sh }

The servers of happiness configuration parameter relates to the size of a matching found

in this bipartite graph. If a matching of at least h edges can be found in G, then the share

placement has suitable availability characteristics; otherwise, the availability characteristics

are unacceptable and the storage operation must not succeed.

The above is very nearly sufficient as a test for servers-of-happiness. The only modifi-

cation we need to perform is to add an edge to E for each server that has agreed in a peer

selection phase to store a particular erasure-coded share. This amends servers-of-happiness

so that it tells us if the storage operation, once completed, will have suitable availability

characteristics, which is exactly what we want a servers-of-happiness test to do. Intuitively,

we would expect a peer selection mechanism to keep track of the shares stored by a particu-

lar server (or, equivalently, which servers store which share), an expectation which motivates

our implementation. Such an implementation could consist of an object that takes in such

an association, constructs a graph from the association, as described above, and then com-

putes, using an appropriate algorithm like Edmonds-Karp, a maximum matching in the

graph, returning the cardinality of the matching as a result. This remains independent of

most of the mechanics of peer selection (e.g., the process of communicating over the network

with storage server), allowing the peer selection phase and availability test phase to be two

conceptually different parts of the program, which eases maintenance.

When first implemented, this is how servers-of-happiness was integrated into Tahoe-

LAFS. The existing multi-phase share placement algorithm was left intact, except for mod-

ifications to create and maintain the necessary data structures to allow the bipartite graph

to be constructed. After peer selection and share allocation, but before the uploader actu-

ally started uploading data, the test described above is performed. If the share placement

yields acceptable availability properties, then the storage operation is allowed to continue;

otherwise, the storage operation fails. Though this had advantages in terms of implemen-

tation (in particular, it made the change much less invasive than it could have been), it

comes at the cost of a fairly significant mismatch between the share placement algorithm

and the share placement availability test. Specifically, the share placement algorithm was
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not designed to satisfy the servers-of-happiness upload availability test. In many situations,

the existing share placement algorithm would do a good job satisfying the servers of hap-

piness test, but there are many cases in which it doesn’t. For example, consider the case of

a share placement operation that comes upon a server that already holds some or all of the

shares that need placing. This may happen in storage operations associated with a high-

level repair, in which the file to be stored has already been stored on the filesystem. The

existing share placement algorithm would mark these shares as placed. This is acceptable

from the standpoint of the simpler shares of happiness share placement test, but does not

do a good job of satisfying the servers of happiness test, since only one of the shares on the

single storage server can contribute an edge to the matching and since the existing place-

ment algorithm will not attempt to place any of the other shares elsewhere. Instead, we’d

like the share allocation algorithm to attempt to spread the shares around to other storage

servers, improving availability characteristics. These sorts of interactions show some of the

benefits to a share placement strategy that is conceptually integrated with the availability

test performed upon the share placement.

It is straightforward to modify the servers of happiness test to also determine share

placements. First, note that an edge (sh, sr) in the bipartite matching is essentially a share

assignment, in that it can be interpreted to say “store share sh on server sr”. This suggests

that we can get more information about where to store things by going beyond a simple

scalar description of the matching by also considering its constituent edges. We can modify

the shares of happiness test to place shares using this observation by adding another set of

edges to the edge set of the bipartite graph describe above. Specifically, we want to add an

edge for each possible share placement. That is, we want to draw an edge from each share

to each server that could possibly store that share. If we compute the matching in the same

way as before, the edges of the matching will be the share placements that we should use if

we want to get the maximum availability score, as determined by the servers of happiness

availability test, and the number of assignments that we have is how available our resulting

allocation will be.
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More formally, we construct the bipartite graph G as follows.

• Let G = (Sr ⊍ Sh,E), where

• Sr is the set of storage servers.

• Sh is the set of shares to be placed.

• E = {(sr, sh) ∶ sr ∈ Sr, sh ∈ Sh, sr stores sh }∪{(sr, sh) ∶ sr ∈ Sr, sh ∈ Sh, sr could store sh}

To allocate our erasure-coded shares, we compute a maximum bipartite matching in

G; the edges in the matching are our share placements, and the number of edges dictates

the availability of our file according to the servers of happiness availability test. If there

aren’t at least h edges, we conclude that the file does not have satisfactory availability

characteristics and refuse to complete the storage operation.

This behaves acceptably in scenarios where there are at least as many servers accepting

shares as there are shares to place. In situations where there are fewer servers than shares

to place, this has a very significant downside: it will not place all of the shares. This results

from the fact that the size of a maximum matching in a bipartite graph is bounded by

the size of the smaller of the two vertex sets that make up the graph. So, in a situation

where the size of the server vertex set is smaller than the size of the share vertex set, the

size of the matching is bounded by the number of servers available to store shares. This

is addressed fairly simply, however: we simply store the unallocated shares onto servers

which have been allocated a share by the bipartite matching, attempting to spread them

out evenly according to the individual matching. For example, in a situation in which there

were 10 erasure-coded shares but only 5 storage servers, we would place 2 shares on each

of the 5 storage servers.

Another weakness of this formulation is its inability to distinguish between shares that

already exist on the filesystem and shares that have not yet been placed on the filesystem.

To conserve network bandwidth, we want preexisting shares to compose as much of our

matching as possible, since preexisting shares don’t need to be uploaded during the storage

operation. We do not, however, want to have a share allocation that is less available

than it could be if network bandwidth was unimportant; in other words, we must re-use
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preexisting shares subject to the constraint that we may not produce a smaller matching

than an algorithm that does not distinguish between preexisting shares and shares that must

be uploaded. We can do this by splitting the share allocation operation into two phases:

a matching on the subgraph of G formed by the edges associated with currently existing

share placements, followed by a matching on the graph G without the edges and vertices

used in the first matching. The union of these two matchings is the share placement, and it

has the property that it is the same size as a maximum matching in G, and that it re-uses

as many pre-existing share placements as is possible while still being a maximum matching.

We’ve now evolved an almost-complete share allocation algorithm based on the servers

of happiness availability measurement. We have not yet specified, however, how to handle

share placements that are rejected by storage servers. We say that a share allocation has

been rejected if the storage server refuses to store the share that it was allocated. This

may happen because the storage server is full, because the storage server is broken, or for

a variety of other reasons. Since we purport to deal with actual, realistic systems, this is a

case that we should handle.

Intuitively, we would need to recalculate the share allocation if some part of the share

allocation was rejected by a storage server. To avoid cases where the exact same share

allocation is retried, we must also modify the bipartite graph slightly before recalculating the

share allocation. The most obvious way to do this is to remove any server that rejected its

allocation from the set of servers (and delete any associated edges). This ignores information

that the storage server gives us when rejecting our storage request, however. We can split

the idea of rejection into two distinct actions: rejection because of insufficient space, and

rejection due to an error. We may assume that servers which reject shares because they

don’t have enough space to store them can still serve shares that they already store. We

should not make the same assumption about servers that reject share allocations due to

an error, since the error condition may render them unable to serve shares that they have

already stored. These distinctions help show how we can alter the bipartite graph to reflect

rejection when it happens. In the case where a storage server is full, we shouldn’t remove

the storage server entirely from the graph; instead, we should remove any edges added

to reflect the possibility of storing new shares on the storage server, leaving the edges for
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shares already stored intact. This increases the likelihood that the server can contribute

meaningfully to availability measurements for the storage operation. Only in the case of

an error should a server be removed entirely from the graph. Note that this has a useful

invariant for guaranteeing eventual termination: in every case in which the share allocation

is recalculated, at least one edge is removed from the graph.

There are possible efficiency considerations, though. We expect, in cases where a storage

allocation request is rejected, that most of the other allocation requests are successful. To

avoid having to make redundant allocation requests in subsequent iterations of the protocol,

we would like for the share allocation strategy to re-use shares that have been allocated

but not yet stored as pre-existing shares are. We can do this through another application

of the subgraph idea that re-uses preexisting shares. Specifically, after the matching phase

for preexisting shares, we add another matching phase on the subgraph of G formed by

taking servers, shares, and edges that represent shares allocated in previous iterations of

the allocation procedure. As before, we remove from the graph considered by subsequent

phases any edges, servers, and shares used in the matching for allocated shares. As before,

the final matching is the union of the three matchings made in phases of the protocol, and,

as before, this is a maximum matching in the graph. Then, subject to the constraint that

we first want to maximize the number of preexisting shares used and the constraint that

we want a maximum matching, we minimize our redundant storage requests by adding a

separate phase for shares already allocated.

Putting it all together, we have the following algorithm outline:

• Poll storage servers for their shares. Register each share with the servers of happiness

share allocator object.

• Determine which servers are able to accept new shares. Register these servers with

the servers of happiness allocator object.

• Using the iterated bipartite graph matching technique described above, generate a

matching and return the edges of that matching as share allocations.
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• Attempt to allocate shares on servers according to the matching. If some allocations

fail, register these failures with the allocator object and regenerate the matching.

Register successful allocations with the allocator. Repeat this process until there are

no errors or until the matching falls below the configured availability threshold.

We encourage the reader to consult the source code of our implementation in the ap-

pendix for a more accurate and thorough treatment of our algorithm.

By using the servers of happiness share placement availability test to motivate share

placement, this addresses many edge cases associated with using servers of happiness as a

test only. It also makes efficient re-use of shares that already exist, and handles failures in

an intelligent way.

4.4 Discussion

The main advantage of shares of happiness over servers of happiness is that it is much

simpler. This makes it easier for users without specialized knowledge to understand the

happiness parameter and to reason about what it should be set to, given availability ex-

pectations and grid characteristics. It also means that it has fewer side effects, and side

effects that are easier to understand. This simplicity contributes to the main disadvantage

of shares of happiness, however, since it is not powerful enough to give us the availability

guarantees we want. Servers of happiness is more complicated, requiring at least an ac-

quaintance with elementary graph theory to understand fully. This means that it is much

harder for a user without specialized training to understand the parameter and determine

an appropriate setting. On the other hand, it has sufficient power to give us a good idea of

the availability of files once stored on the distributed filesystem.
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Chapter 5

A Comparison of Share Placement

Algorithms

In the previous chapter, we introduced two availability measurements used in Tahoe-LAFS

to evaluate the placement of erasure-coded shares in a distributed filesystem. We identified

the shortcomings of the shares of happiness test, and showed how the more complicated

servers of happiness test addresses those shortcomings. Anecdotally, users and developers

are generally happy with how the servers of happiness test works relative to the shares of

happiness test. In this chapter, we will present a simulation that we will use to evaluate

variants of these two tests, measuring availability and bandwidth usage over time. We will

compare servers of happiness and shares of happiness both to each other and to a control

algorithm. We will discuss the results of this simulation. Our results show that servers of

happiness offers significant improvements over shares of happiness in both file availability

and efficiency. We will briefly define what we mean by file availability and efficiency, and

then discuss the results of the simulation.

5.1 Design of the simulation

We will evaluate the two file share allocation strategies from the perspective of a client

storing some amount of data on a filesystem. The filesystem will have a fixed number n

of servers that fail with probability p at each time step of the simulation. At the initial
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time step, the client will store its data (one or more files) on the filesystem according to

the share placement algorithm and availability test being used at the time. On subsequent

time steps, execution will proceed as follows:

• Each server will be prompted to fail. Each server will fail with probability p.

• The client will assess the health of each of the files it has stored on the filesystem.

There are three possible answers:

– Healthy: shares may be missing, but the file’s availability characteristics are still

consistent with the configured health parameter.

– Unhealthy: the file’s availability characteristics are no longer consistent with the

configured health paramater, but the file is still recoverable.

– Unreadable: there are not enough shares left to recover the file.

The results of these assessments will be recorded.

• The client will repair any unhealthy files, if possible.

• Previously failed servers will be restored with probability q. If restored, previously

failed servers return to the grid without any shares that they held at the time that

they failed.

After some number of time steps, the simulation will finish. We will be able to compare

the algorithms based on a few measurements collected throughout the simulation.

• Total number of shares uploaded (which models resource utilization)

• Total number of unhealthy files found

• Total number of files lost by the end of the simulation

5.2 Implementation of the simulation

We expect to divide the simulation into two types of objects: client objects and server

objects.
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A client object keeps track of events observed over the course of the simulation. It keeps

track of as much state as is necessary to evaluate the health of files and, when acceptable,

to restore them. It has a method that will cause it to assess the availability of its files, a

method that will cause it to attempt to repair files, and a method that will cause it to place

files.

A server object is composed primarily of file storage state. It maps file identifiers to

the shares stored for that file. It also has a method that causes the server to fail with

probability p, methods that allow a client to get and set storage state if the server has not

failed, and a method to possibly restart the server.

An object representing the filesystem is responsible for aggregating the server objects

and exposing them to the client object.

Client objects contain references to share allocation and file evaluation objects, which

are the meat of the simulation. We expect to have a share allocation object for shares of

happiness, a share allocation object for servers of happiness, and a random share allocation

object to act as a control. The first two of these will contain simplified code snippets from

Tahoe-LAFS, following the algorithms described in the previous chapter.

The interaction between these objects is managed by a coordinator object. At each time

step, the coordinator object will make the servers fail, initiate file assessment and repair,

and make some servers go up again. The coordinator object will also gather statistics from

the clients as the simulation progresses, and then report those to the user.

5.3 The Control Algorithm

To determine how effective shares of happiness and servers of happiness are in general, we

will compare them with a random peer selection algorithm. The random peer selection

algorithm randomly chooses a destination server for each erasure coded share, and does not

have a specific availability test.
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5.4 Criteria for evaluating the simulation

We consider two criteria when evaluating the results of our simulation. One criterion is

file availability. As mentioned, we distinguish between three states of file availability inside

the simulation: healthy, unhealthy, and unrecoverable. Of these, we care primarily about

whether a file is recoverable or not, since the health of a file is primarily an internal indicator

of whether a file needs repair. The other criterion is efficiency, which we will evaluate by

considering how many shares need to be placed over the course of the simulation to preserve

the availability of a file. In an actual distributed filesystem, there are many more efficiency

considerations than share placement, but the number of shares placed is a useful proxy for

many of these. Storage, bandwidth usage, and CPU usage are all closely correlated to the

number of shares generated, for example.

We wish to maximize the availability of files, and we wish to minimize the number of

shares placed over the course of the simulation.

5.5 Simulation parameters

We conduct our simulation using the framework described above. We run the simulation for

5000 timesteps, and simulate the results for 100 files stored on filesystems of 6, 8, 10, and

12 servers. Our encoding parameters are k = 3,n = 10. The happy parameter, described

earlier, is set to 7. Storage servers fail at each timestep with probability .075. Failed

storage servers recover at each timestep with probability .3. For each simulation, we keep

track of the number of shares placed by each client, and the number of files associated

with each client that are recoverable. We will use these data to assess the various share

placement algorithms in the next section. By varying the number of servers, we may also

draw conclusions about how the encoding parameters k and n should relate to the number of

servers in order to ensure good reliability. We also run a second simulation with these same

parameters on grids of 10 and 12 servers, but in which storage servers will not store more

than 280 shares each. We use this to test the behavior of each algorithm when allocations

fail due to storage capacity issues.
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5.6 Results and Discussion

Availability

In general, servers of happiness yields better availability outcomes than either of the other

algorithms. In both unbounded and unbounded capacity tests, and for all server quantities

tested, the servers of happiness algorithm manages to preserve more files for longer than

the other two algorithms.

First, we consider the results for the 6 server test, shown in figure 5.1.
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Figure 5.1: Availability versus time for a 6 server simulation

None of the algorithms performs particularly well with 6 servers. The random algorithm

– the leftmost line in the graph – loses all of its shares almost immediately. By 300 timesteps,

the shares of happiness algorithm has lost all of its shares, and by 500 timesteps, the servers

of happiness algorithm follows suit. This, we expect, is due to the small number of servers

participating in the simulation. Intuitively, files are more resilient to the failure of one or a

few storage servers if they are spread out amongst a large number of storage servers, since

in that case one or a few storage servers is not a majority of available storage servers. Our

availability results for 8, 10, and 12 shares demonstrate this experimentally.

As mentioned, servers of happiness outperforms both the random algorithm and the
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shares of happiness algorithm. In a filesystem with only 6 storage servers and in which

h = 7, servers of happiness will never regard a share allocation as healthy, so it will always

repair files when given the opportunity to do so. As long as shares of happiness places at

least 7 shares, it can regard share allocations in a filesystem with only 6 servers as healthy,

which means that it may not take advantage of the opportunity to repair files. This gives

an advantage to servers of happiness, which is in a better position to place shares on newly

activated servers and maintain a share placement that is resilient to the failure of storage

servers. That said, neither algorithm offers particularly inspiring performance.

The 8 server test, shown in figure 5.2, yields slightly more interesting results.
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Figure 5.2: Availability versus time for an 8 server simulation

As before, the random algorithm and the shares of happiness algorithm lose their files

relatively quickly; the former before 500 timesteps, the latter at 500 timesteps. The servers

of happiness algorithm manages to hold on to its files for much longer, however, retaining

all of them up until 2500 timesteps. We suspect that this performance is due largely to

the same factors as those identified above; servers of happiness is designed to detect and

react to situations in which there are too few servers to satisfy availability requirements,

while shares of happiness is not designed to do this. That servers of happiness retains its

shares for much longer than in the 6 server simulation (and for much longer than the other
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algorithms in both simulations) is likely due to the fact that 8 servers is, given our encoding

and health parameters, a small enough number of servers to pose availability challenges,

but a large enough number to allow servers of happiness or an algorithm designed to take

availability into account to preserve its files.

The 10 and 12 server simulations, shown in figures 5.3 and 5.4, continue this trend.
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Figure 5.3: Availability versus time for a 10 server simulation
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Figure 5.4: Availability versus time for a 12 server simulation
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As before, the random algorithm loses its files earlier than the other algorithms; in

figure 5.3, the random algorithm loses all of its files by slightly after 500 timesteps, and

in figure 5.4 all files placed by the random algorithm are lost by 1500 timesteps. In each

simulation, the shares of happiness algorithm outperforms the random algorithm, retaining

files until 2500 timesteps in figure 5.3 and until the end of the simulation in figure 5.4. As in

figures 5.1 and 5.2, the servers of happiness algorithm outperforms the shares of happiness

algorithm in figure 5.3, and retains all of its files until the end of the test in 5.4, delivering

availability on par with shares of happiness. Figure 5.3 is consistent with the progression

seen in figures 5.2 and 5.1; the servers of happiness retains files for longer than the shares

of happiness algorithm, which retains files for longer than the random algorithm in each

case, but the length of time

The availability results change slightly when we impose an upper bound on the number

of shares that storage servers are allowed to store. In this case, it is important not only

to maximize availability but also to efficiently utilize space on the filesystem, since placing

too many shares while repairing can make it harder to do repair operations in the future.

Figures 5.5 and 5.6 show the results for these tests.
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Figure 5.5: Availability versus time for a 10 server simulation with 280 share capacity

These results are generally consistent with figures 5.1, 5.2, 5.3 and 5.4, in that the
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Figure 5.6: Availability versus time for a 12 server simulation with 280 share capacity

random algorithm loses its files before the other two algorithms (and relatively close to

the beginning of the simulation), the shares of happiness algorithm loses its files before the

servers of happiness algorithm, and the servers of happiness algorithm retains more files

for as long or longer than the other two algorithms. The primary difference associated

with storage capacity limits is a change to the way the servers of happiness and shares

of happiness lose their files. In simulations in which no bound is placed on the storage

capacity of storage servers, the servers of happiness and shares of happiness algorithms

tend to either retain all of their files or retain none of their files, instead of losing some files

gradually over the course of the simulation. In figures 5.5 and 5.6, we see the first partial

file losses for servers of happiness and shares of happiness. In figure 5.5, both algorithms

lose some shares at the start of the simulation, then continue on with most or all of the

remaining shares until either the remaining shares are also lost or until the simulation ends.

Figure 5.6 shows similar data. This is as expected. If servers have an upper bound on the

number of shares that they will store, then not all share allocation requests to a normally

functioning storage server will succeed, since the storage server may be too full to accept

new shares. This can result in repair operations that fail, or that achieve file availability

characteristics that aren’t as good as could be had if all storage requests were accepted.
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In all simulations, the availability graphs of shares of happiness and servers of happiness

are similar in shape. In the unbounded simulation, they both start as a flat line, followed

by a very steep drop, followed by another flat segment, corresponding to small number of

timesteps in which all files are lost. The same general shape is apparent in the bounded

simulation as well, though in these simulations there are more gradual file availability losses

at points.

We have not developed a satisfactory explanation for the dramatic slope of the servers

of happiness and shares of happiness graphs. We suspect that these events correspond to a

timestep in which a very large number of storage servers are offline at once. Both algorithms

will react to these situations by placing all of the shares on the remaining storage servers.

A weakness of shares of happiness is its ignorance of the topology of the storage servers as it

relates to the need for shares to be distributed across storage servers. In this situation, this

problem presents itself when storage servers that had previously failed rejoin the network.

Intuitively, we would like for the shares that had been previously allocated to the small

number of storage servers remaining after a failure to be spread out across the new storage

servers. However, as long as the storage servers holding large numbers of shares remain

operational, shares of happiness will not attempt to spread the shares out. Then, later, if

all or most of those storage servers fail, shares of happiness can be left with a large number

of files that are unrecoverable. In summary, a steeply-sloped line is not surprising for shares

of happiness. The steeply sloped line for servers of happiness is somewhat surprising, since

it takes advantage of newly-created storage servers to spread shares around. It is possible

that the failures of servers of happiness correspond to situations in which more than n−k+1

storage servers fail at once, in which case a well-distributed file would be unrecoverable.

More study and instrumentation of the simulation is necessary to understand this behavior.

In general, servers of happiness yields better availability outcomes than either the ran-

dom algorithm or the shares of happiness algorithm. It retains files for longer than either of

the other two algorithms, and retains more of them than either of the other two algorithms.

Availability outcomes improve across the board as the number of servers increases, and are

generally better in tests with unbounded storage server capacity than in tests with an upper

bound on storage server capacity.
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Efficiency

As mentioned, we evaluate the efficiency of share placement algorithms by keeping track

of how many shares each algorithm places over the course of the simulation. We wish to

minimize this quantity; in other words, we want a share placement algorithm that places

as few shares as possible, subject to the constraint that the algorithm also has acceptable

availability characteristics. Since the number of shares placed correlates to storage space

utilization, network bandwidth, and CPU time, minimizing the number of shares placed

has desirable implications for an actual distributed filesystem.

To evaluate algorithms, we will view graphs of the number of shares placed over time.

On each graph, we will plot a line for each of the random, shares of happiness, and servers

of happiness share placement algorithms. There are two attributes of each line that we

care about. The maximum y-axis value of a line is the number of shares placed over the

course of the simulation by the algorithm corresponding to that line. The slope of the line

is a way to understand how many shares the algorithm tends to place per timestep. A

steeply-sloped line corresponds to an algorithm that places a large number of shares per

timestep; a more gradual slope corresponds to an algorithm that places a smaller number

of shares per timestep. To effectively meet our requirements above, then, we should favor

an algorithm with a relatively gradual slope and a small number of shares placed over the

course of the simulation. These requirements give preference to algorithms that have lost

all of their files, however. If an algorithm has no recoverable files, then it cannot perform

any repair operations, will not place any shares, and will have a slope of zero and will not

place any more shares over the course of the simulation. If such an algorithm loses all of

its files early in the simulation, it can look very appealing, since it will place far fewer total

shares than algorithms that preserve file availability until the end of the simulation. To

avoid this, we must consider whether and where the slope of the line associated with an

algorithm goes to zero over the course of the simulation.

We first consider figure 5.7, a graph showing the share placement rates of the three

algorithms during the 6 server simulation.

Recall from figure 5.1 that no algorithm retained files for more than 500 timesteps in the
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Figure 5.7: Shares placed versus time for a 6 server simulation

6 server simulation. As expected, then, all of the lines in figure 5.7 level off quickly, by the

end of the 500th timestep. The random algorithm stops placing new shares by the 100th

timestep, but has the most gradual slope of the three algorithms, suggesting either that it

lost a large number of files before the other algorithms or that it does not place as many

shares as the other two algorithms when functioning normally. The servers of happiness

algorithm places 50% more shares than the shares of happiness algorithm over the course of

the simulation, but also retains its files for longer than the shares of happiness algorithm.

The servers of happiness algorithm places shares at a slower rate than the shares of happiness

algorithm. Overall, considering our desire to minimize resource utilization subject to the

requirement that we retain files for as long as we can, and considering the points at which

the algorithms lose all of their files and stop placing new shares, the servers of happiness

algorithm produces a better availability outcome than the others in the case of 6 servers,

since it retains its files for longer than the other algorithms and needs to place fewer shares

per timestep to do that.

The results in figure 5.8 are similar to the results in figure 5.7.

As before, the random algorithm loses all of its files very early in the simulation. The

shares of happiness algorithm follows suit at around 500 timesteps. The servers of happiness
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Figure 5.8: Shares placed versus time for an 8 server simulation

algorithm loses all of its shares by 2500 timesteps. The servers of happiness algorithm places

more shares than either of the other two algorithms, which is to be expected considering

the fact that it preserves its files for 1500 more timesteps than either of the other algo-

rithms. In terms of share placement rate, servers of happiness clearly outperforms shares

of happiness. The servers of happiness algorithm takes 1000 timesteps to place as many

shares as the shares of happiness algorithm placed by 500 timesteps, when it lost all of its

files. If both algorithms had retained all of their files until the end of the simulation, and if

both algorithms had maintained the same share placement rate throughout the simulation,

then the shares of happiness algorithm would have placed far more shares by the end of

the simulation than the servers of happiness algorithm to achieve equivalent availability

characteristics. Figure 5.9 is consistent with these results.

Once again, the random algorithm loses all of its files very early in the simulation. The

shares of happiness algorithm loses all of its files at around 2000 timesteps, and the servers

of happiness algorithm follows suit at around 4000 timesteps. As before, the servers of

happiness places shares at a much more gradual pace than shares of happiness. Indeed,

despite retaining its files for almost twice as long as the shares of happiness algorithm,

the servers of happiness places around half as many shares in total over the course of the
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Figure 5.9: Shares placed versus time for a 10 server simulation

simulation as the shares of happiness algorithm, which is a very significant improvement.

The line associated with the servers of happiness algorithm has a smaller slope in figure 5.9

than in figures 5.7 and 5.8. This is a result of the number of servers in these simulations.

When there are more servers, we expect the servers of happiness algorithm to do fewer

repairs per timestep, since it’s less likely that enough of the servers will be broken at a

particular timestep to require a repair of a file. In other words, servers of happiness has to

perform fewer repairs per timestep when there are more servers than when there are fewer

servers. These trends continue into the 12 server simulation, which is graphed in figure

5.10.

Figure 5.10 corresponds to a simulation in which both servers of happiness and shares

of happiness retain all of their files until the end of the simulation. Servers of happiness

has a clear efficiency advantage in this case. The shares of happiness algorithm places more

than 3 times as many shares as the servers of happiness algorithm to achieve the same

availability outcome.

Figures 5.11 and 5.12 graph the placement rates of the three algorithms in simulations

in which the storage servers have an upper limit on the number of shares that they are

willing to place.
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Figure 5.10: Shares placed versus time for a 12 server simulation
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Figure 5.11: Shares placed versus time for a 10 server simulation with 280 share capacity

These are roughly consistent with figures 5.9 and 5.10. Specifically, the random algo-

rithm places the fewest total shares, but at the cost of unacceptable file loss. The shares

of happiness algorithm places more shares in total than either of the other two algorithms,

and places shares much more quickly than the other two algorithms.

In general, servers of happiness has better efficiency characteristics than the other two
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Figure 5.12: Shares placed versus time for a 12 server simulation with 280 share capacity

algorithms when file availability requirements are taken into account. Given equivalent

availability outcomes, it tends to place fewer total shares than shares of happiness, and

places fewer shares per timestep than shares of happiness. This suggests that the servers of

happiness algorithm needs to do fewer repairs over the course of the simulation (suggesting

that it is better able to deal with server failures than shares of happiness), and that it is

better able to detect and use existing shares than shares of happiness.

5.7 Conclusions

We have discussed the results of a simulation that tested the performance of the servers of

happiness, shares of happiness and random share placement algorithms on a storage grid

with unpredictable server failures. Our results show that the servers of happiness algorithm

is a significant improvement over the shares of happiness algorithm both in terms of file

availability and efficiency. It retains more files for longer than the shares of happiness

algorithm, and manages to do so with a far smaller share placement rate than the shares

of happiness algorithm. In an actual distributed filesystem, these results suggest that the

servers of happiness algorithm would do a better job of conserving resources than the shares
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of happiness algorithm, and would do a better job of retaining and repairing files than the

shares of happiness algorithm. We have not yet tested these conclusions, but intend to

modify our work so it is suitable for inclusion in Tahoe-LAFS.
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Chapter 6

Summary, Future Work, and

Conclusions

We have presented the servers of happiness share placement algorithm. Specifically, we’ve

introduced David-Sarah Hopwood’s idea to use a bipartite graph to test for availability

properties in Tahoe-LAFS, and used this idea to develop a share placement algorithm

designed to produce share allocations that pass the shares of happiness test. We have

discussed a simulation framework that allows us to test the performance of share placement

algorithms on a distributed filesystem with configurable failure and recovery rates. We

have shown that, in this simulation, our servers of happiness algorithm improves both in

terms of availability and in terms of resource utilization on its predecessor, the shares of

happiness algorithm. We have also left some unanswered questions. In particular, we would

like to more thoroughly investigate the cause of the sudden and total file loss exhibited by

both the shares of happiness and servers of happiness algorithms, and understand why

these algorithms do not fail more gradually, like the random algorithm. This would likely

involve improvements to the simulation framework; in particular, to its ability to output

and effectively visualize data. In general, we feel that enhancing the simulation framework

would allow us to better understand both the servers of happiness and shares of happiness

algorithms, and possibly to discover ways that they could be improved. We would also like

to better understand the relation of the number of servers and the encoding parameters
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for files. Clearly, availability outcomes in our experiments improved as the number of

servers increased, but this isn’t a particularly novel conclusion. Ideally, we would like a

guide for setting n, k, and any necessary health criterion based on the number of storage

servers expected to be functioning at any given time. Finally, we would like to examine the

assumption in our simulation that all storage servers have infinite storage capacity. Clearly,

this isn’t the case in the real world. Intuitively, these limitations would favor servers of

happiness over shares of happiness, since servers of happiness has a generally smaller share

placement rate than shares of happiness, but experimental validation of this intuition would

be useful.
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Appendix: Proofs about Maximum

Matchings

Let G = (V1⊍V2,E) be a complete bipartite graph. Consider S, a subgraph of G. Let M be

a maximum matching in S. Let G ′ be the subgraph of G induced by removing all vertices in

M and all edges whose endpoints include vertices in M. Let M ′ be a maximum matching

formed in G ′.

Lemma 1: (disjointness of M and M ′)

M and M ′ are vertexwise-disjoint

Proof. By construction of G ′, no vertex that appears in an edge in M can appear in M ′.

Therefore, M and M ′ are vertexwise-disjoint.

Lemma 2: (M and M ′ are a matching)

M ∪M ′ is a matching

Proof. By hypothesis, M and M ′ are each a matching. By lemma 1, M and M ′ are

vertexwise-disjoint, and, therefore, disjoint. Then M ∪M ′ is a matching, as required.

Lemma 3: (M and M ′ are a maximum matching)

M ∪M ′ is the same cardinality as a maximum matching G.

Proof. Note that that the size of a maximum matching in G is the size of the smaller of

V1 and V2. Suppose that this size is n. Suppose that ∣M ′∣ = m. Note that m vertices are
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removed from each vertex set to construct G ′ from G. Since G ′ is still complete, the size of

a maximum matching in G ′ is n−m. Since M and M ′ are disjoint, ∣M∪M ′∣ =m+n−m = n,

as required.

Now let G be a complete bipartite graph, and let R = (V1∪V2,E) be a graph such that

one of V1 and V2 is a subset of one of the vertex sets in G. Let M be a maximum matching

formed in R. Let G ′ be the subgraph of G induced by removing all of the vertices in M.

Let M ′ be a maximum matching formed in G ′. Let H be the graph formed by combining

G and R.

Lemma 4: (disjointness of M and M ′)

M and M ′ are vertexwise-disjoint

Proof. Similar to lemma 1.

Lemma 5: (M and M ′ are a matching)

M ∪M ′ is a matching.

Proof. Similar to lemma 2.

Lemma 6: (M and M ′ are maximum)

∣M ∪M ′∣ is at least as large as the size of a maximum matching in G.

Proof. Let n be the size of a maximum matching in G. Since G is complete, we know that

n is the size of the smaller of the two vertex sets composing G. Let m =M. Note that the

smallest vertex set in G ′ is at most m vertices smaller than the smallest vertex set in G.

Since G ′ is still complete, the size of a maximum matching in G ′ is at least n −m. Then

∣M ∪M ′∣ is at least m +n −m = n units in size, as required.

Lemma 7: (M and M ′ are a maximum matching in a new graph)

Let H be the combination of G and R. Then M ∪M ′ is a maximum matching in H.

Proof. Assume, for contradiction, that there is a matching Z in H such that ∣Z∣ > ∣M∪M ′∣.
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We first note that Z can be expressed as the disjoint union of a set of edges Q from R

and another set of edges F from a subgraph G ′Q of G induced by Q, as described above. If

Z contains edges from G −G ′Q, then Z is not a matching, a contradiction; thus, edges in F

must come from the subgraph of G induced by Q. Clearly, Q and F must themselves be

matchings if Z is to be a matching. Note that ∣Q∣ ≤ ∣M∣, since M is a maximum matching

in R, and since Q is a matching in R. Since G ′Q is a complete graph, the size of F is bounded

from above by the size of the smaller of the two vertex sets in G ′Q.

Formally, we say that for some complete graph G, and some edge set Q from R, as

described above, the contribution bound of the complete graph G ′Q, as described above, is

the size of the smallest vertex set in G ′Q; we denote this as:

Smallest(G ′Q)

Using this terminology, we can express the cardinality of Z as:

∣Z∣ ≤ ∣Q∣ + Smallest(G ′Q)

noting that Z need not use a maximum matching from Smallest(G ′Q), and that Q and

G ′Q have disjoint edge sets by construction, thus allowing us to add ∣Q∣ to the bound.

We can express the cardinality of M ∪M ′ as

∣M ∪M ′∣ = ∣M∣ + Smallest(G ′M)

We now observe that ∣M∣ > ∣Q∣. If ∣M∣ = ∣Q∣, Smallest(G ′Q) = Smallest(G ′M), since G

is a complete graph, and we have that

∣Z∣ ≤ ∣M∣ + Smallest(G ′M)

≤ ∣M ∪M ′∣

which is a contradiction. Since ∣M∣ > ∣Q∣, we have that

62



Smallest(G ′Q) ≤ Smallest(G ′M) + (∣M∣ − ∣Q∣)

since Smallest(G ′Q) is at most ∣M∣− ∣Q∣ larger than Smallest(G ′M), as G
′
Q has ∣M∣− ∣Q∣

more vertices in the vertex set it shares with R as G ′M. Then

∣Z∣ ≤ ∣Q∣ + Smallest(G ′Q)

≤ ∣Q∣ + Smallest(G ′M) + (∣M∣ − ∣Q∣)

≤ ∣M∣ + Smallest(G ′M)

≤ ∣M ∪M ′∣

which is a contradiction. Then ∣M ∪M ′∣ is a maximum matching in H.

Theorem: 8. The share placement that results from the three-phase matching construction

used in servers of happiness is a maximum matching in the bipartite graph induced by the

state of the filesystem.

Proof. Note that the three phase share placement protocol is a composition of lemma 7

and lemma 3. Specifically, it is composition of a matching in a partially distinct graph of

readonly share placements combined with a matching in an induced complete subgraph from

which a maximum matching is extracted by combining a maximum matching in a subgraph

of the complete graph and a maximum matching in an induced complete subgraph. Then,

by lemmas 3 and 7, the end result is a maximum matching.
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