
YOUR CLOUD STORAGE PROVIDER DOESN’T NEED
TO SEE YOUR DATA

Brian Warner
Zooko Wilcox-O’Hearn

Audience Participation Demo:
http://tahoe-lafs.org/RSA

zooko
starts

http://shorturlhere
http://shorturlhere

Tahoe-LAFS

Who We Are

• Brian Warner

• Zooko Wilcox-O’Hearn

• developers of Tahoe-LAFS
• http://allmydata.org/trac/tahoe

2

Tahoe-LAFS

What We’re Here To Talk About

3

Security of Data in the Cloud

Bring Your Own Security

Tahoe-LAFS

The Principle Of Least Authority

• Security of Data Stored in a Cloud
• Your Right to Security and Cloud Storage
• Better Options: Bring Your Own Security
• How Tahoe-LAFS Implements Those Options

Tahoe-LAFS

What We Want You To Take Home

• Beliefs:
– You deserve provider-independent security
– Usability Matters!
– The techniques in Tahoe-LAFS can be applied to other systems

• Skills:
– Reliance Analysis

• Tools:
– Erasure coding
– Storing encryption keys in filehandles (capability-based security)

4

– You deserve confidentiality and integrity even when you buy reliability
and availability from a cloud storage provider

– simplifies key management
– Tahoe-LAFS is an open-source system which offers easy-to-use

– Learn to identify which properties rely upon which components
– Erasure coding: provides tunable reliability-vs-overhead
–

5

Security of Data in the Cloud

brian takes over

Tahoe-LAFS

Cloud Storage is Cheap, Easy, and Scalable

• Plenty of vendors: Amazon, Rackspace, Google

• But it changes the security picture
– who else can see your data?
– who else can modify your data?

6

It is increasingly easy to outsource the storage of bulk data. Economies of scale allow storage providers to host
data at lower cost than you could do internally, literally pennies per gigabyte. Scaling is easier, and intermittent
capital expenses turn into predictable monthly operational costs.
But it changes the security picture.

Tahoe-LAFS

Property Perimeters

7

Your Datacenter

availability

integrity

confidentiality

App Storage

Everyone understands the notion of a security perimeter. It’s like a wall around the important things:
you rely upon everything inside it. Your security depends upon everything inside this wall behaving as
expected.

We can refine this to talk about separate perimeters for separate properties. In the case of storage, we
care about three things: confidentiality, integrity, and availability. Confidentiality is knowing that
nobody else can see your data. Integrity is knowing that you get the right data, not something that’s
corrupted. And availability is that you get your data at all, quickly, any time you want it.

For data that you manage on your own hardware, you only get these properties if all of your own
hardware works correctly and remains uncompromised. This is hard enough: you’re reliant upon every
admin, every employee, every janitor who can get at those machines to do the right thing all the time.
You’re also reliant upon your attackers to do the right thing by failing to break in to your machines.

Tahoe-LAFS

Drawing Perimeters Around Clouds

8

availability

integrity

confidentiality

App Storage

Your Datacenter Cloud Storage Provider

When you include outsourced storage, all these perimeters are stretched. In addition to
your own hardware and staff, you are now vulnerable to failures or compromises of your
storage providers facilities. How many people can see your data now? Can you even count
them? What sorts of assurances can you possibly have? You’re making an economic
tradeoff between cost, convenience, and security, but with hardly any information about
one of these important factors.

Tahoe-LAFS

Separate the Perimeters

9

availability

integrity

confidentiality

App Storage

Your Datacenter Cloud Storage Provider

So our goal is to separate these concerns. There has been a lot of discussion about what sorts of security the cloud
provider should be obligated to give you. Our position is that you should assume they give you nothing. Purchase
availability from your storage provider, but bring your own security.

(metaphor about a celebrity who hires a limo, takes a commercial flight, but brings their own bodyguard instead of
accepting one from the limo/airline company)

We want to build a system in which your data remains confidential even if the storage provider publishes everything you
give them to the entire world. And which can detect even a single bit flip in that data.

With a system like that, you’re making a cost-benefit analysis based upon the provider’s ability to offer availability
alone, which is something you can actually measure. This is a much easier decision to manage.

Tahoe-LAFS

Gateway

10

availability

integrity

confidentiality

App StorageGateway

Your Datacenter Cloud Storage Provider

Basically we want to implement a gateway, within your own security perimeter, that
performs encryption and integrity checking between the plaintext that your app speaks
(red arrow) and the validated ciphertext that you give to your storage provider (black
arrow).

11

Bring Your Own
Security

Tahoe-LAFS

Key-Value Store

12

App Storage

Your Datacenter Cloud Storage Provider

PUT: storage[key] = value
GET: value = storage[key] key1: value1

key2: value2

So let’s make this a bit more concrete. A common API for storage services is the Key-
Value store. There are two basic operations. You can PUT a key with a value, and you can
GET the value for a previously stored key. The key can be an arbitrary string, and the
value is an arbitrary blob of data.

Tahoe-LAFS

confidentiality

Opaque Key-Value Store

13

App Storage

Cloud Storage Provider

def PUT(value):
 key = RANDOM()
 storage[key] = value
 return key

def GET(key):
 value = storage[key]
 return value

key1: value1
key2: value2

Your Datacenter

filehandle

It’s increasingly common for storage systems to give you back an arbitrary key instead of letting you
choose your own. Many Content Distribution Networks (CDNs) use this technique. You can think of the
key as an opaque file-handle for one particular piece of data. The application doesn’t care what it is, it
just knows to hand it back to the GET method later on. They are usually stored in some other data
structure, like a database “foreign key” column.

Note how the storage system lies within the confidentiality perimeter: any compromises of the storage
provider will result in a loss of security. This is how most current cloud storage systems work.

Tahoe-LAFS

confidentiality

Encrypt Before Store

14

App Storage

Cloud Storage Provider

Gateway

SI-1: ciphertext1
SI-2: ciphertext2

def PUT(value):
 key = RANDOM()
 SI = SHA2(key)
 storage[SI] = AESenc(key, value)
 return key

def GET(key):
 SI = SHA2(key)
 return AESdec(key, storage[SI])

Your Datacenter

filehandle
storage-index

So our first step is to insert a gateway, which encrypts the data before giving it to the storage system.
We generate a new unique AES key for each file, and return that key to the application as the
filehandle. We derive a “storage index” from that key with a one-way hash, to tell the storage provider
where to store the ciphertext. This saves us from needing to remember the storage index separately
for each file.

Note that by storing the key in the file-handle, much of the “key management” problem goes away: if
you have the filehandle, you have all the information you need to locate, retrieve, and decrypt the file.
The application uses a filehandle to access the plaintext; the storage server uses a storage-index to
access the ciphertext. From the application’s point of view, nothing has changed: we’re just building
the filehandle in a different way than before.

This removes the storage system from the confidentiality perimeter. Nothing the storage host can do
will compromise the confidentiality of our data, because they never get the decrpytion key. We are still
relying upon it for integrity: a bit flip in the cloud will be decrypted and result in corrupted data
arriving to our application.

Tahoe-LAFS

integrity

confidentiality

Encrypt, Hash, Store

15

App Storage

Cloud Storage Provider

def GET(filecap):
 (key, hash) = filecap
 SI = SHA2(key)
 ciphertext = storage[SI]
 assert(SHA2(ciphertext) == hash)
 return AESdec(key, ciphertext)

Gateway

SI-1: ciphertext1
SI-2: ciphertext2

Your Datacenter

def PUT(value):
 key = RANDOM()
 SI = SHA2(key)
 ciphertext = AESenc(key, value)
 storage[SI] = ciphertext
 filecap = (key, SHA2(ciphertext))
 return filecap

We can protect our data’s integrity against errors in the storage system by hashing the
ciphertext before delivery, and checking that hash upon retrieval. A hash failure is treated
identically to a failed read: availability is lost, but integrity is uncompromised. This
protects the application against undetected errors on the storage host.

We store the hash next to the encryption key, inside the filehandle. At this point, we start
calling the application-side retrieval handle a “filecap”, since it provides the capability to
retrieve the file. It is just a string, containing two cryptographic values. Note that this
filecap is both necessary and sufficient to retrieve the file.

We hash the ciphertext (as opposed to the plaintext), for reasons we’ll go into later.

Tahoe-LAFS

Erasure Coding for Reliability

integrity

16

confidentiality

App Storage

Cloud Storage Provider

def PUT(value):
 ciphertext = AESenc(key, value)
 SI = SHA2(key)
 shares = FEC(ciphertext)
 for i,server in enum(servers):
 server.storage[SI] = shares[i]
 filecap = (key, SHA2(ciphertext))
 return filecap

def GET(filecap):
 (key, hash) = filecap
 SI = SHA2(key)
 shares = someservers.storage[SI]
 ciphertext = unFEC(shares)
 assert(SHA2(ciphertext) == hash)
 return AESdec(key, ciphertext)

Gateway

Storage

Storage

Your Datacenter

availability

and for extra credit, we can apply erasure coding, also known as Forward Error
Correction, to split the ciphertext into pieces, in such a way that we only need a subset of
those pieces to recover the original. The Reed-Solomon algorithm is a great
implementation of this, fast and simple.

We can send each piece to a different server, and thus tolerate failures of a configurable
subset of them. This reduces our availability perimeter: we are less dependent upon the
availability of any individual server. This might let you meet your availability goals with
cheaper commodity servers that don’t individually give you super uptime. Or it might let
you achieve a higher availability goal than any one server can offer. The tradeoff between
cost and quality is decided by your gateway, when the file is encoded.

Tahoe-LAFS

Using Multiple Storage Providers: RAIC

17

integrity

confidentiality

Cloud Storage Providers

Gateway

Your Datacenter

availability

This technique lets you spread the risk among multiple providers. In this case, the
independence of having multiple administration domains actually helps rather than hurts,
because it gets you decorrelated failures. Instead of being vulnerable to security failures
at all of your providers, your data remains available as long as at least one provider is still
running. You get the maximum of their availabilities instead of the minimum of their
security. This can amplify the overall reliability by a huge factor.

You’ve heard of RAID. We call this RAIC: Redundant Array of Inexpensive Clouds.

18

Tahoe-LAFS

zooko takes over while audience is laughing

Now that we’ve convinced you that you want these properties, and shown you how to
build a system that provides them, it’s time to show you the system that we’ve already
built.

Tahoe-LAFS

Tahoe-LAFS

• Tahoe-LAFS: the Least-Authority File System
• http://tahoe-lafs.org
• implements distributed confidentiality, integrity, and

availability
• open-source project started in 2006, as backend for a

startup company offering
consumer backup services

19

We developed Tahoe to provide backend storage services for an online backup company,
in which a selling point was that the company would be unable to see its users’ data.

source code, installation instructions, bug tracker, mailing list, IRC channel

Tahoe-LAFS

Tahoe-LAFS: Overview

20

Client
App Storage

Tahoe-LAFS
Storage Servers

Storage

Storage

Tahoe-LAFS gateway

- web browser
- command-line tool
- Windows virtual drive
- Javascript frontends
- tahoe backup tool
- Duplicity plugin
- FTP/SFTP client
- FUSE

Tahoe webapi
over HTTP(S)
or (S)FTP

Tahoe storage protocol
over TCP/SSL

Tahoe
Storage

client

HTTP(S)
Server

Tahoe provides both the security-providing gateway and the reliability-providing
distributed storage system. The gateway contains an embedded webserver through which
clients can manipulate the filesystem through a simple REST-ful HTTP protocol. This
enables the creation of numerous client applications, many of which ship with the Tahoe
source code.

Tahoe-LAFS

Tahoe-LAFS Grid

21

Storage

Storage

Storage

Storage

Introducer

Client

Client

Client

Each instance of a Tahoe grid is established by means of an “Introducer”. This is a special
service that helps nodes connect to each other. All nodes connect to the introducer, both
clients and storage servers. The Introducer distributes location information about all
other nodes, allowing..

Tahoe-LAFS

Tahoe-LAFS Grid

22

Storage

Storage

Storage

Storage

Introducer

Client

Client

Client

.. the establishment of a full mesh of connectivity: each client connects to all storage
servers.

Tahoe-LAFS

Tahoe CLI, webapi

23

Client
App

Tahoe-LAFS gateway

RESTful webapi
over HTTP(S)

Tahoe
Storage

client

HTTP(S)
Server

% tahoe put gettysburg.txt

- web browser
- command-line tool
- Javascript frontends

POST /uri?t=upload HTTP/1.0

Fourscore and seven years ago..

The most basic operation is to upload a file into the grid through the CLI “put” command.
This simply takes the input data and sends it in the body of an HTTP “POST” to a special
URL hosted in the gateway process.

Tahoe-LAFS

File Encoding

24

Tahoe-LAFS gateway

Fourscore and seven years ago..

Tahoe
Storage

client

HTTP(S)
Server

Rm91cnNjb3JlIGFuZCBzZXZlbiB5..

AES VdW81qLA6INx0uRPg0aWrKkMGgI..

FEC

hashes

UrsCStmWZFlyBat6Jr1VX3sBYGg..

hashes

DTI8UhOmF3/tO97N+PJ/GsY8aw0..

hashesfilecap: URI:CHK:n7djtlf3xnswqzrl4fjt..

From there, the gateway performs the same steps we described earlier: encryption,
hashing, erasure coding. It winds up with a collection of “shares” (of which any
sufficiently-large subset will allow recovery), and the filecap. The default encoding
parameters are “3-out-of-10”, meaning it creates 10 shares, of which any 3 are enough
to recreate the file. Encoding can be tuned to create anywhere from 1 to 256 shares,
allowing complete flexibility of the tradeoff between size expansion and reliability.

Tahoe-LAFS

Share Upload

25

Tahoe-LAFS gateway

Tahoe
Storage

client

HTTP(S)
Server

VdW81qLA6INx0uRPg0aWrKkMGgI..

hashes

UrsCStmWZFlyBat6Jr1VX3sBYGg..

hashes

DTI8UhOmF3/tO97N+PJ/GsY8aw0..

hashes

Storage

Storage

Storage

The shares are each sent to a different storage server, using a Tahoe-specific protocol.

Tahoe-LAFS

CLI returns filecap

26

Client
App

Tahoe-LAFS gateway

RESTful webapi
over HTTP(S)

Tahoe
Storage

client

HTTP(S)
Server

% tahoe put gettysburg.txt
URI:CHK:n7djt...
%

- web browser
- command-line tool
- Javascript frontends

POST /uri?t=upload HTTP/1.0

Fourscore and seven years ago..

200 OK

URI:CHK:n7djtlf3xnswqzrl4fjthqejdm:ffyrg5nbmubbjyc
6vgf3a7bgqpq24p6fzpuygp2isq2mjtgyalma:3:10:7326

Once the shares are placed, the gateway returns the new filecap in the HTTP response
body, and the CLI tool emits the filecap.

Tahoe filecaps are fairly short ASCII strings: that’s an example of a real filecap in red.
These strings are easy to pass around, via IM, email, or other channels.

Tahoe-LAFS

Downloading Files

27

Client
App

Tahoe-LAFS gateway

RESTful webapi
over HTTP(S)

Tahoe
Storage

client

HTTP(S)
Server

% tahoe get URI:CHK:n7djt...
Four score and seven years..
%

- web browser
- command-line tool
- Javascript frontends

GET /uri/URI:CHK:n7djt.. HTTP/1.0

200 OK

Fourscore and seven years ago..

When the filecap is passed back to the CLI “get” command, it uses the same interface to
send a download request to the gateway. This finds the shares, decodes the ciphertext,
verifies the hashes, decrypts, and returns the plaintext as the HTTP response body.

Granting access to a specific file is as easy as sharing the filecap.

Tahoe-LAFS

Demo

• CLI: tahoe put, tahoe get
• web interface: checker, verifier
• corrupt a share, recover file from other shares
• delete a share, repairer re-creates it

28

Tahoe-LAFS

Sharing Files

• Sharing access to a single file is as easy as sharing the
filecap
– grants access to exactly that one file, no others
– Principle Of Least Authority

29

slides.ppt

filecap: URI:CHK:n7djtlf3xnswqzrl4fjt.. filecap: URI:CHK:n7djtlf3xnswqzrl4fjt..

Tahoe-LAFS

Mutable Files

30

App Storage

Your Datacenter Cloud Storage Provider

slot1: value1
CREATE: return slot1
PUBLISH: storage[slot1] = value
RETRIEVE: value = storage[slot1]

Everything we’ve discussed until now has been about immutable files. These are
remarkably powerful, and we’ve gotten a lot of milage out of them alone. But being able
to change the contents of a file without changing its identity is a necessary primitive. So
we also define mutable slots. There is an explicit create step, which returns the slot’s
identity (another opaque string). Then there are publish and retrieve operations to set
and get the contents. Most cloud storage providers offer this sort of interface.

Tahoe-LAFS

Mutable Filecaps

• We define two kinds of filehandles for mutable files
– “writecaps” allow publishing new content
– “readcaps” allow retrieving existing content
– readcap can be derived from writecap, but not vice versa

31

writecap: URI:SSK:dvdhjmtpzpb2o2..

readcap: URI:SSK-RO:p55arnjqbrpc..

RSA signing key

AES encryption key

RSA verifying key

Tahoe makes a point of distinguishing between read-only access and read-write access,
and defines two separate kinds of filecaps for mutable files: readcaps and writecaps. The
implementation details are a bit complex for this presentation, but basically each slot is
defined by a RSA keypair. The writecap gives you access to the private signing key, which
is used to sign all shares. The readcap gives you access to both the public verifying key
(so you can distinguish real shares from fakes), and a symmetric AES decryption key (so
you can decrypt the ciphertext into plaintext). The readcap can be derived from the
writecap, giving the writer access to everything, but withholding the signing key from the
reader.

Tahoe-LAFS

Read-Only Access to Mutable Files

• To grant read-only access to a file, share the readcap
– retain write access for yourself, or share it with someone else
– restrictions are enforced by cryptography, not access control

policies, sysadmins, or goodwill of providers

32

slides.ppt

writecap: URI:SSK:dvdhjmtpzpb2o2..readcap: URI:SSK-RO:p55arnjqbrpc..

read() read()

write()write()

This makes it possible to share read-only access to a file, while retaining write access for
yourself. The read-only limitation is enforced by the design of the encryption format.

Tahoe-LAFS

Directories

• Tahoe Directories are tables, mapping childname to cap
– table is serialized, then uploaded as a file
– “dircap” is a filecap with instructions to interpret contents in a

special way

33

Documents

slides.ppt outline.txt

URI:CHK:n7djt.. URI:CHK:lcimg..

slides.ppt: URI:CHK:n7djt..
outline.txt: URI:CHK:lcimg..

URI:CHK:a2gxo..

URI:DIR-IMM:a2gxo..

brian takes over

Everything we’ve shown you so far has been about files: mapping a filecap to some
contents. For systems where you already have a place to store the filehandles, this may be
all you need. But it’s awfully convenient to use a directory structure to keep track of your
filehandles.

In Tahoe, we implement directories in the same capability-oriented style as we use for
files. Instead of a big global tree, we manage each directory independently. In any system,
a directory is just a container with a bunch of named children [diagram on left]. In Tahoe,
we express this container as a table, which maps child names to their filecaps [diagram on
right]. We then serialize this table into a string, and then upload the string into the grid,
giving us a new filecap. Then we take the filecap for that serialized table and add a flag
that marks it as a directory [box on far right]. We call this specially marked cap a dircap,
and hold onto the dircap instead of all the original children’s filecaps. Like filecaps,
dircaps are fairly short ASCII strings which can be shared through email or IM.

The Tahoe client knows how to dereference a dircap-plus-childname combination, and
makes it convenient to perform the usual add-rename-delete operations on directories.

Since dircaps can be used as children too, we can nest these directories any way we like.
This lets us retain an arbitrarily complex directory structure and an unlimited number of
files with just a single dircap. Typically, each user manages a single such “rootcap”, and
references everything else as paths underneath that root.

Tahoe-LAFS

Subdirectories

34

• Directories can reference other directories
– they contain dircaps and filecaps
– lookup starts at a “root” dircap
– then traverses one edge at a time

• $DIRCAP/foo/bar.txt

URI:DIR-
IMM:st5c
3..

foo

bar.txt

Subdirectories are merely directories that are pointed to by some other directory, like the
“foo” directory in this diagram.

Note that there is no global “root directory”, merely a starting point for any particular
lookup operation. Any path that you work with will always start with a dircap. The system
will evaluate a path by traversing one link at a time, for each component of the path: in
this example, it starts by finding the directory referenced by the dircap, then it follows
the “foo” link to another directory, then it follows the “bar.txt” link to find the file we care
about.

Tahoe-LAFS

• Tahoe files and directories form a directed graph
– names are on the edges
– nodes are filecaps or dircaps
– no “parent” pointers

• Files can be referenced by multiple parents

Tahoe Directory Graph

35

URI:CHK:n
7djt..

URI:CHK:l
cimg..

URI:DIR-
IMM:a2gx
o..

slides.ppt outline.txt

URI:DIR-
IMM:ffyr
g..

presentation

An interesting consequence of treating directories as first-class objects is that we wind up
with a directed graph of files and directories, not a tree. Both files and directories can be
referenced by multiple parents, using independent names.

One directory might reference this left-hand file under the name “presentation”, while a
different directory could reference it as “slides.ppt”.

Tahoe-LAFS

Sharing Directories

36

• Directories can be referenced by multiple parents
– entire subgraphs too

– Users can share some, but not all
– simply pass a dircap string
– no accounts, no ACLs

URI:DIR-
IMM:ffyr
g..

URI:DIR-
IMM:st5c
3..

This turns out to make sharing quite easy to use and understand. By simply copy-and-
pasting a single dircap, users can share arbitrarily fine-grained portions of their directory
structures. There are no accounts to configure, no administrator to appeal to. Any user
who can see a directory can share it.

Tahoe-LAFS

Tahoe Directory Features

• Directories can be stored in mutable or immutable files
– when stored in immutable, Tahoe enforces deep-immutability

• Child caps can be readcaps or writecaps
– each directory table stores two columns: writecap, readcap
– superencryption is used to enforce deep-readonlyness
– all child writecaps are encrypted with a key derived from the

parent writecap before encoding
• Users can grant read-only access to a directory subtree

– while retaining write access for themselves or others

37

Tahoe directories can be mutable or immutable, depending upon what kind of file they’re
stored in. For the mutable ones, there are both readcaps and writecaps. These properties
are “deep” (i.e. transitive): everything you can reach through a directory readcap will be
read-only, and everything you get through an immutable dircap will also be immutable.

This makes it easy to grant read-only access to a subtree, while retaining write access for
yourself.

Tahoe-LAFS

Sharing Directories

38

• Users can share a common directory
– use as a mailbox, or collaboration space

Alice
Bob

To-Bob

From-Alice

Tahoe users routinely link a shared subdirectory underneath their personal rootcap, and
use it to exchange files with a collaborator. For example, Alice can create an “outbox” for
Bob, by creating a new subdirectory and handing him a readcap to it. Bob then links the
readcap into his own directory space, under a name of his choice. Alice will be able to
write into that directory (as indicated by the red arrows). But Bob, through his readcap..

Tahoe-LAFS

Sharing Directories

39

• Users can share a common directory
– use as a mailbox, or collaboration space

Alice
Bob

To-Bob

From-Alice

.. will only be able to read the shared files (in green), not modify them. The type of access
(readonly, read-write) is determined solely by the links through which each user traverses.

Nobody else get any access, unless Alice or Bob specifically grants it by passing them the
dircap.

[if there is time, maybe show a demo of dir-readcaps in the web-ui, showing what this “To-Bob” directory looks like
from both sides]

40

POLA

Tahoe-LAFS

Principles Of Least Authority

• Share a single file or directory, not all your files
• Share readonly access, not read+write
• No component of the system (gateway, storage server)

has more authority than it needs
– compromised storage servers cannot violate security
– compromised gateways can only violate security of filecaps you

give them
– no “root”, no administrators with extra powers

• Break up your design into pieces, give each piece least
authority

41

We’ve designed Tahoe to express the Principle of Least Authority at many levels. From the user’s point
of view, the filesystem allows easy, fine-grained sharing of specific files and directories. We believe
that sharing filecaps and dircaps is easier than persuading an administrator to update a table of ACLs.
And as we all know, if users cannot easily accomplish their goals within the system, they’ll accomplish
them outside the system, which means just sharing their passwords with each other. That would be the
Principle Of Maximum Authority, and that’s bad.

We believe that using filecaps and dircaps makes it easier for users to visualize the scope and scale of
the authority they’re sharing, more so than hidden control panels and properties dialog boxes.

At the lower levels, the cryptographic protocols ensure that only the user’s gateway can see or change
the user’s files, and the storage servers are not used for anything but storing ciphertext.

As a general design principle, we strongly encourage application developers to follow this approach:
break your design up into pieces, give each piece as little authority as possible. Not only does this
improve security, it helps debugging, maintenance, reliability against bitrot, and code readability.

Tahoe-LAFS

Verifycaps

• All files have a “verifycap”
• contains integrity-checking hashes, storage-index

– but *no* decryption keys
• verifycaps can be used to check integrity of ciphertext

– allows servers, other non-trusted parties to do maintenance work
• new shares (for existing files) can be created using just

the verifycap
– allows non-trusted parties to perform repair work

• lets you take advantage of machines that would normally
be off-limits due to security considerations

42

skip if short on time

Another expression of POLA is the Tahoe verifycap. Each file has one, and it’s a string
that holds the integrity-checking hashes, but not the decryption key. If you have one of
these, you can find the shares, verify every single bit against corruption, reconstruct the
ciphertext, even generate new shares that are guaranteed to be bit-for-bit identical to the
original ones, but not recover the plaintext.

This lets you safely delegate data scrubbing and repair work to anyone you like:
volunteers, a paid repairer service, even the storage servers themselves can participate in
the job of keeping those shares healthy. This lowers your maintenance costs by expanding
the pool of eligible worker machines.

Tahoe-LAFS

Other Tahoe-LAFS Features

• Garbage Collection
– leases on shares, updated periodically, shares expire

• Web Browser -oriented UI
– Server management, grid status, current activity, performance
– provisioning/reliability calculation tools

• Verify/Repair
– scan shares for errors, replace corrupted ones
– deep traversal from a starting dircap

• Good Alacrity
– use of Merkle Hash Trees for verification
– fetch minimal data (128KB) before returning plaintext

43

Some other Tahoe features that you might want to learn more about later: we have a
lease-based garbage collector to allow servers to delete shares for files that are no longer
in use, to recover disk space. There is a browser-based UI which includes some grid
management/status tools. There are both web and CLI based tools to perform deep
traversal of a directory structure and look for problems like missing or corrupted shares,
and to automatically repair any damage that’s found.

And finally, Tahoe maintains a goal of providing low-alacrity access to files, meaning that
no matter how large the file is, you should be able to start streaming a download quickly,
without fetching very much data from the servers. By using a Merkle hash tree for integrity
protection, we never have to retrieve more than about 128KB of data to start producing
validated plaintext.

[maybe do demo here of streaming playback of a large movie file, to show off low alacrity]

Tahoe-LAFS

Ongoing Work

• Smaller filecaps, Faster mutable files
– RSA keypair generation takes a second or two
– ECDSA would take milliseconds
– new formats for shorter filecaps

• Accounting
– tracking+limiting how much space is consumed by each user

• More frontends
– WebDAV, Browser plugins
– tahoe://filecap -style URLs

44

Some of the future projects we’re working on include new cryptographic formats, using
elliptic curve DSA, to get smaller filecaps and faster creation time for mutable files. We’re
working on an accounting system to help keep track of how much server space is
consumed by each user, so they can be billed or limited appropriately. And we’re working
on more frontend protocols, in particular a WebDAV frontend would get us easy
integration with all the common operating systems.

Tahoe-LAFS

Related Projects

• Hadoop-lafs
• Duplicity backup plugin
• TiddlyWiki in Tahoe-LAFS
• Android, iPhone clients

45

zooko concludes

Tahoe-LAFS

Taking It Home

• Analyze your current storage architecture to determine
what components you rely upon for confidentiality,
integrity, and availability

• Install a Tahoe-LAFS grid, use it to store and share data
• Use these same techniques to build a storage system

that gets you provider-independent security
• Don’t rely upon your cloud storage provider for security:

Bring Your Own Security

46

So hopefully, armed with today’s knowledge, here’s what you can do when you get home.

47

More Info?
http://tahoe-lafs.org
tahoe-dev@allmydata.org

Audience Participation Demo:
http://tahoe-lafs.org/RSA

source code, installation instructions, bug tracker, mailing list, IRC channel

http://shorturlhere
http://shorturlhere

Tahoe-LAFS

bonus slides

48

Tahoe-LAFS

Convergent Encryption

confidentiality

49

App Storage

Cloud Storage Provider

Gateway

SI-1: ciphertext1
SI-2: ciphertext2

Your Datacenter

def PUT(value):
 key = SHA(value)
 SI = SHA(key)
 storage[SI] = AESenc(key, value)
 return key

def GET(key):
 SI = SHA(key)
 return AESdec(key, storage[SI])

Optionally, we use another trick called “convergent encryption”, in which the encryption
key is a secure hash of the plaintext. This has the convenient property that uploading the
same file twice results in the same ciphertext, which can be shared between the two
instances to save space.

This doesn’t affect the GET code at all.

