1 | // algebra.h - written and placed in the public domain by Wei Dai |
---|
2 | |
---|
3 | //! \file algebra.h |
---|
4 | //! \brief Classes for performing mathematics over different fields |
---|
5 | |
---|
6 | #ifndef CRYPTOPP_ALGEBRA_H |
---|
7 | #define CRYPTOPP_ALGEBRA_H |
---|
8 | |
---|
9 | #include "config.h" |
---|
10 | #include "misc.h" |
---|
11 | #include "integer.h" |
---|
12 | |
---|
13 | NAMESPACE_BEGIN(CryptoPP) |
---|
14 | |
---|
15 | class Integer; |
---|
16 | |
---|
17 | //! \brief Abstract group |
---|
18 | //! \tparam T element class or type |
---|
19 | //! \details <tt>const Element&</tt> returned by member functions are references |
---|
20 | //! to internal data members. Since each object may have only |
---|
21 | //! one such data member for holding results, the following code |
---|
22 | //! will produce incorrect results: |
---|
23 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
---|
24 | //! But this should be fine: |
---|
25 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
---|
26 | template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup |
---|
27 | { |
---|
28 | public: |
---|
29 | typedef T Element; |
---|
30 | |
---|
31 | virtual ~AbstractGroup() {} |
---|
32 | |
---|
33 | //! \brief Compare two elements for equality |
---|
34 | //! \param a first element |
---|
35 | //! \param b second element |
---|
36 | //! \returns true if the elements are equal, false otherwise |
---|
37 | //! \details Equal() tests the elements for equality using <tt>a==b</tt> |
---|
38 | virtual bool Equal(const Element &a, const Element &b) const =0; |
---|
39 | |
---|
40 | //! \brief Provides the Identity element |
---|
41 | //! \returns the Identity element |
---|
42 | virtual const Element& Identity() const =0; |
---|
43 | |
---|
44 | //! \brief Adds elements in the group |
---|
45 | //! \param a first element |
---|
46 | //! \param b second element |
---|
47 | //! \returns the sum of <tt>a</tt> and <tt>b</tt> |
---|
48 | virtual const Element& Add(const Element &a, const Element &b) const =0; |
---|
49 | |
---|
50 | //! \brief Inverts the element in the group |
---|
51 | //! \param a first element |
---|
52 | //! \returns the inverse of the element |
---|
53 | virtual const Element& Inverse(const Element &a) const =0; |
---|
54 | |
---|
55 | //! \brief Determine if inversion is fast |
---|
56 | //! \returns true if inversion is fast, false otherwise |
---|
57 | virtual bool InversionIsFast() const {return false;} |
---|
58 | |
---|
59 | //! \brief Doubles an element in the group |
---|
60 | //! \param a the element |
---|
61 | //! \returns the element doubled |
---|
62 | virtual const Element& Double(const Element &a) const; |
---|
63 | |
---|
64 | //! \brief Subtracts elements in the group |
---|
65 | //! \param a first element |
---|
66 | //! \param b second element |
---|
67 | //! \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function. |
---|
68 | virtual const Element& Subtract(const Element &a, const Element &b) const; |
---|
69 | |
---|
70 | //! \brief TODO |
---|
71 | //! \param a first element |
---|
72 | //! \param b second element |
---|
73 | //! \returns TODO |
---|
74 | virtual Element& Accumulate(Element &a, const Element &b) const; |
---|
75 | |
---|
76 | //! \brief Reduces an element in the congruence class |
---|
77 | //! \param a element to reduce |
---|
78 | //! \param b the congruence class |
---|
79 | //! \returns the reduced element |
---|
80 | virtual Element& Reduce(Element &a, const Element &b) const; |
---|
81 | |
---|
82 | //! \brief Performs a scalar multiplication |
---|
83 | //! \param a multiplicand |
---|
84 | //! \param e multiplier |
---|
85 | //! \returns the product |
---|
86 | virtual Element ScalarMultiply(const Element &a, const Integer &e) const; |
---|
87 | |
---|
88 | //! \brief TODO |
---|
89 | //! \param x first multiplicand |
---|
90 | //! \param e1 the first multiplier |
---|
91 | //! \param y second multiplicand |
---|
92 | //! \param e2 the second multiplier |
---|
93 | //! \returns TODO |
---|
94 | virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; |
---|
95 | |
---|
96 | //! \brief Multiplies a base to multiple exponents in a group |
---|
97 | //! \param results an array of Elements |
---|
98 | //! \param base the base to raise to the exponents |
---|
99 | //! \param exponents an array of exponents |
---|
100 | //! \param exponentsCount the number of exponents in the array |
---|
101 | //! \details SimultaneousMultiply() multiplies the base to each exponent in the exponents array and stores the |
---|
102 | //! result at the respective position in the results array. |
---|
103 | //! \details SimultaneousMultiply() must be implemented in a derived class. |
---|
104 | //! \pre <tt>COUNTOF(results) == exponentsCount</tt> |
---|
105 | //! \pre <tt>COUNTOF(exponents) == exponentsCount</tt> |
---|
106 | virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
---|
107 | }; |
---|
108 | |
---|
109 | //! \brief Abstract ring |
---|
110 | //! \tparam T element class or type |
---|
111 | //! \details <tt>const Element&</tt> returned by member functions are references |
---|
112 | //! to internal data members. Since each object may have only |
---|
113 | //! one such data member for holding results, the following code |
---|
114 | //! will produce incorrect results: |
---|
115 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
---|
116 | //! But this should be fine: |
---|
117 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
---|
118 | template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T> |
---|
119 | { |
---|
120 | public: |
---|
121 | typedef T Element; |
---|
122 | |
---|
123 | //! \brief Construct an AbstractRing |
---|
124 | AbstractRing() {m_mg.m_pRing = this;} |
---|
125 | |
---|
126 | //! \brief Copy construct an AbstractRing |
---|
127 | //! \param source other AbstractRing |
---|
128 | AbstractRing(const AbstractRing &source) |
---|
129 | {CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;} |
---|
130 | |
---|
131 | //! \brief Assign an AbstractRing |
---|
132 | //! \param source other AbstractRing |
---|
133 | AbstractRing& operator=(const AbstractRing &source) |
---|
134 | {CRYPTOPP_UNUSED(source); return *this;} |
---|
135 | |
---|
136 | //! \brief Determines whether an element is a unit in the group |
---|
137 | //! \param a the element |
---|
138 | //! \returns true if the element is a unit after reduction, false otherwise. |
---|
139 | virtual bool IsUnit(const Element &a) const =0; |
---|
140 | |
---|
141 | //! \brief Retrieves the multiplicative identity |
---|
142 | //! \returns the multiplicative identity |
---|
143 | virtual const Element& MultiplicativeIdentity() const =0; |
---|
144 | |
---|
145 | //! \brief Multiplies elements in the group |
---|
146 | //! \param a the multiplicand |
---|
147 | //! \param b the multiplier |
---|
148 | //! \returns the product of a and b |
---|
149 | virtual const Element& Multiply(const Element &a, const Element &b) const =0; |
---|
150 | |
---|
151 | //! \brief Calculate the multiplicative inverse of an element in the group |
---|
152 | //! \param a the element |
---|
153 | virtual const Element& MultiplicativeInverse(const Element &a) const =0; |
---|
154 | |
---|
155 | //! \brief Square an element in the group |
---|
156 | //! \param a the element |
---|
157 | //! \returns the element squared |
---|
158 | virtual const Element& Square(const Element &a) const; |
---|
159 | |
---|
160 | //! \brief Divides elements in the group |
---|
161 | //! \param a the dividend |
---|
162 | //! \param b the divisor |
---|
163 | //! \returns the quotient |
---|
164 | virtual const Element& Divide(const Element &a, const Element &b) const; |
---|
165 | |
---|
166 | //! \brief Raises a base to an exponent in the group |
---|
167 | //! \param a the base |
---|
168 | //! \param e the exponent |
---|
169 | //! \returns the exponentiation |
---|
170 | virtual Element Exponentiate(const Element &a, const Integer &e) const; |
---|
171 | |
---|
172 | //! \brief TODO |
---|
173 | //! \param x first element |
---|
174 | //! \param e1 first exponent |
---|
175 | //! \param y second element |
---|
176 | //! \param e2 second exponent |
---|
177 | //! \returns TODO |
---|
178 | virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; |
---|
179 | |
---|
180 | //! \brief Exponentiates a base to multiple exponents in the Ring |
---|
181 | //! \param results an array of Elements |
---|
182 | //! \param base the base to raise to the exponents |
---|
183 | //! \param exponents an array of exponents |
---|
184 | //! \param exponentsCount the number of exponents in the array |
---|
185 | //! \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the |
---|
186 | //! result at the respective position in the results array. |
---|
187 | //! \details SimultaneousExponentiate() must be implemented in a derived class. |
---|
188 | //! \pre <tt>COUNTOF(results) == exponentsCount</tt> |
---|
189 | //! \pre <tt>COUNTOF(exponents) == exponentsCount</tt> |
---|
190 | virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
---|
191 | |
---|
192 | //! \brief Retrieves the multiplicative group |
---|
193 | //! \returns the multiplicative group |
---|
194 | virtual const AbstractGroup<T>& MultiplicativeGroup() const |
---|
195 | {return m_mg;} |
---|
196 | |
---|
197 | private: |
---|
198 | class MultiplicativeGroupT : public AbstractGroup<T> |
---|
199 | { |
---|
200 | public: |
---|
201 | const AbstractRing<T>& GetRing() const |
---|
202 | {return *m_pRing;} |
---|
203 | |
---|
204 | bool Equal(const Element &a, const Element &b) const |
---|
205 | {return GetRing().Equal(a, b);} |
---|
206 | |
---|
207 | const Element& Identity() const |
---|
208 | {return GetRing().MultiplicativeIdentity();} |
---|
209 | |
---|
210 | const Element& Add(const Element &a, const Element &b) const |
---|
211 | {return GetRing().Multiply(a, b);} |
---|
212 | |
---|
213 | Element& Accumulate(Element &a, const Element &b) const |
---|
214 | {return a = GetRing().Multiply(a, b);} |
---|
215 | |
---|
216 | const Element& Inverse(const Element &a) const |
---|
217 | {return GetRing().MultiplicativeInverse(a);} |
---|
218 | |
---|
219 | const Element& Subtract(const Element &a, const Element &b) const |
---|
220 | {return GetRing().Divide(a, b);} |
---|
221 | |
---|
222 | Element& Reduce(Element &a, const Element &b) const |
---|
223 | {return a = GetRing().Divide(a, b);} |
---|
224 | |
---|
225 | const Element& Double(const Element &a) const |
---|
226 | {return GetRing().Square(a);} |
---|
227 | |
---|
228 | Element ScalarMultiply(const Element &a, const Integer &e) const |
---|
229 | {return GetRing().Exponentiate(a, e);} |
---|
230 | |
---|
231 | Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
---|
232 | {return GetRing().CascadeExponentiate(x, e1, y, e2);} |
---|
233 | |
---|
234 | void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
---|
235 | {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);} |
---|
236 | |
---|
237 | const AbstractRing<T> *m_pRing; |
---|
238 | }; |
---|
239 | |
---|
240 | MultiplicativeGroupT m_mg; |
---|
241 | }; |
---|
242 | |
---|
243 | // ******************************************************** |
---|
244 | |
---|
245 | //! \brief Base and exponent |
---|
246 | //! \tparam T base class or type |
---|
247 | //! \tparam T exponent class or type |
---|
248 | template <class T, class E = Integer> |
---|
249 | struct BaseAndExponent |
---|
250 | { |
---|
251 | public: |
---|
252 | BaseAndExponent() {} |
---|
253 | BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {} |
---|
254 | bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;} |
---|
255 | T base; |
---|
256 | E exponent; |
---|
257 | }; |
---|
258 | |
---|
259 | // VC60 workaround: incomplete member template support |
---|
260 | template <class Element, class Iterator> |
---|
261 | Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end); |
---|
262 | template <class Element, class Iterator> |
---|
263 | Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end); |
---|
264 | |
---|
265 | // ******************************************************** |
---|
266 | |
---|
267 | //! \brief Abstract Euclidean domain |
---|
268 | //! \tparam T element class or type |
---|
269 | //! \details <tt>const Element&</tt> returned by member functions are references |
---|
270 | //! to internal data members. Since each object may have only |
---|
271 | //! one such data member for holding results, the following code |
---|
272 | //! will produce incorrect results: |
---|
273 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
---|
274 | //! But this should be fine: |
---|
275 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
---|
276 | template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T> |
---|
277 | { |
---|
278 | public: |
---|
279 | typedef T Element; |
---|
280 | |
---|
281 | //! \brief Performs the division algorithm on two elements in the ring |
---|
282 | //! \param r the remainder |
---|
283 | //! \param q the quotient |
---|
284 | //! \param a the dividend |
---|
285 | //! \param d the divisor |
---|
286 | virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0; |
---|
287 | |
---|
288 | //! \brief Performs a modular reduction in the ring |
---|
289 | //! \param a the element |
---|
290 | //! \param b the modulus |
---|
291 | //! \returns the result of <tt>a%b</tt>. |
---|
292 | virtual const Element& Mod(const Element &a, const Element &b) const =0; |
---|
293 | |
---|
294 | //! \brief Calculates the greatest common denominator in the ring |
---|
295 | //! \param a the first element |
---|
296 | //! \param b the second element |
---|
297 | //! \returns the the greatest common denominator of a and b. |
---|
298 | virtual const Element& Gcd(const Element &a, const Element &b) const; |
---|
299 | |
---|
300 | protected: |
---|
301 | mutable Element result; |
---|
302 | }; |
---|
303 | |
---|
304 | // ******************************************************** |
---|
305 | |
---|
306 | //! \brief Euclidean domain |
---|
307 | //! \tparam T element class or type |
---|
308 | //! \details <tt>const Element&</tt> returned by member functions are references |
---|
309 | //! to internal data members. Since each object may have only |
---|
310 | //! one such data member for holding results, the following code |
---|
311 | //! will produce incorrect results: |
---|
312 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
---|
313 | //! But this should be fine: |
---|
314 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
---|
315 | template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T> |
---|
316 | { |
---|
317 | public: |
---|
318 | typedef T Element; |
---|
319 | |
---|
320 | EuclideanDomainOf() {} |
---|
321 | |
---|
322 | bool Equal(const Element &a, const Element &b) const |
---|
323 | {return a==b;} |
---|
324 | |
---|
325 | const Element& Identity() const |
---|
326 | {return Element::Zero();} |
---|
327 | |
---|
328 | const Element& Add(const Element &a, const Element &b) const |
---|
329 | {return result = a+b;} |
---|
330 | |
---|
331 | Element& Accumulate(Element &a, const Element &b) const |
---|
332 | {return a+=b;} |
---|
333 | |
---|
334 | const Element& Inverse(const Element &a) const |
---|
335 | {return result = -a;} |
---|
336 | |
---|
337 | const Element& Subtract(const Element &a, const Element &b) const |
---|
338 | {return result = a-b;} |
---|
339 | |
---|
340 | Element& Reduce(Element &a, const Element &b) const |
---|
341 | {return a-=b;} |
---|
342 | |
---|
343 | const Element& Double(const Element &a) const |
---|
344 | {return result = a.Doubled();} |
---|
345 | |
---|
346 | const Element& MultiplicativeIdentity() const |
---|
347 | {return Element::One();} |
---|
348 | |
---|
349 | const Element& Multiply(const Element &a, const Element &b) const |
---|
350 | {return result = a*b;} |
---|
351 | |
---|
352 | const Element& Square(const Element &a) const |
---|
353 | {return result = a.Squared();} |
---|
354 | |
---|
355 | bool IsUnit(const Element &a) const |
---|
356 | {return a.IsUnit();} |
---|
357 | |
---|
358 | const Element& MultiplicativeInverse(const Element &a) const |
---|
359 | {return result = a.MultiplicativeInverse();} |
---|
360 | |
---|
361 | const Element& Divide(const Element &a, const Element &b) const |
---|
362 | {return result = a/b;} |
---|
363 | |
---|
364 | const Element& Mod(const Element &a, const Element &b) const |
---|
365 | {return result = a%b;} |
---|
366 | |
---|
367 | void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const |
---|
368 | {Element::Divide(r, q, a, d);} |
---|
369 | |
---|
370 | bool operator==(const EuclideanDomainOf<T> &rhs) const |
---|
371 | {CRYPTOPP_UNUSED(rhs); return true;} |
---|
372 | |
---|
373 | private: |
---|
374 | mutable Element result; |
---|
375 | }; |
---|
376 | |
---|
377 | //! \brief Quotient ring |
---|
378 | //! \tparam T element class or type |
---|
379 | //! \details <tt>const Element&</tt> returned by member functions are references |
---|
380 | //! to internal data members. Since each object may have only |
---|
381 | //! one such data member for holding results, the following code |
---|
382 | //! will produce incorrect results: |
---|
383 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
---|
384 | //! But this should be fine: |
---|
385 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
---|
386 | template <class T> class QuotientRing : public AbstractRing<typename T::Element> |
---|
387 | { |
---|
388 | public: |
---|
389 | typedef T EuclideanDomain; |
---|
390 | typedef typename T::Element Element; |
---|
391 | |
---|
392 | QuotientRing(const EuclideanDomain &domain, const Element &modulus) |
---|
393 | : m_domain(domain), m_modulus(modulus) {} |
---|
394 | |
---|
395 | const EuclideanDomain & GetDomain() const |
---|
396 | {return m_domain;} |
---|
397 | |
---|
398 | const Element& GetModulus() const |
---|
399 | {return m_modulus;} |
---|
400 | |
---|
401 | bool Equal(const Element &a, const Element &b) const |
---|
402 | {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());} |
---|
403 | |
---|
404 | const Element& Identity() const |
---|
405 | {return m_domain.Identity();} |
---|
406 | |
---|
407 | const Element& Add(const Element &a, const Element &b) const |
---|
408 | {return m_domain.Add(a, b);} |
---|
409 | |
---|
410 | Element& Accumulate(Element &a, const Element &b) const |
---|
411 | {return m_domain.Accumulate(a, b);} |
---|
412 | |
---|
413 | const Element& Inverse(const Element &a) const |
---|
414 | {return m_domain.Inverse(a);} |
---|
415 | |
---|
416 | const Element& Subtract(const Element &a, const Element &b) const |
---|
417 | {return m_domain.Subtract(a, b);} |
---|
418 | |
---|
419 | Element& Reduce(Element &a, const Element &b) const |
---|
420 | {return m_domain.Reduce(a, b);} |
---|
421 | |
---|
422 | const Element& Double(const Element &a) const |
---|
423 | {return m_domain.Double(a);} |
---|
424 | |
---|
425 | bool IsUnit(const Element &a) const |
---|
426 | {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));} |
---|
427 | |
---|
428 | const Element& MultiplicativeIdentity() const |
---|
429 | {return m_domain.MultiplicativeIdentity();} |
---|
430 | |
---|
431 | const Element& Multiply(const Element &a, const Element &b) const |
---|
432 | {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);} |
---|
433 | |
---|
434 | const Element& Square(const Element &a) const |
---|
435 | {return m_domain.Mod(m_domain.Square(a), m_modulus);} |
---|
436 | |
---|
437 | const Element& MultiplicativeInverse(const Element &a) const; |
---|
438 | |
---|
439 | bool operator==(const QuotientRing<T> &rhs) const |
---|
440 | {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;} |
---|
441 | |
---|
442 | protected: |
---|
443 | EuclideanDomain m_domain; |
---|
444 | Element m_modulus; |
---|
445 | }; |
---|
446 | |
---|
447 | NAMESPACE_END |
---|
448 | |
---|
449 | #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES |
---|
450 | #include "algebra.cpp" |
---|
451 | #endif |
---|
452 | |
---|
453 | #endif |
---|