| 1 | // algebra.h - written and placed in the public domain by Wei Dai |
|---|
| 2 | |
|---|
| 3 | //! \file algebra.h |
|---|
| 4 | //! \brief Classes for performing mathematics over different fields |
|---|
| 5 | |
|---|
| 6 | #ifndef CRYPTOPP_ALGEBRA_H |
|---|
| 7 | #define CRYPTOPP_ALGEBRA_H |
|---|
| 8 | |
|---|
| 9 | #include "config.h" |
|---|
| 10 | #include "misc.h" |
|---|
| 11 | #include "integer.h" |
|---|
| 12 | |
|---|
| 13 | NAMESPACE_BEGIN(CryptoPP) |
|---|
| 14 | |
|---|
| 15 | class Integer; |
|---|
| 16 | |
|---|
| 17 | //! \brief Abstract group |
|---|
| 18 | //! \tparam T element class or type |
|---|
| 19 | //! \details <tt>const Element&</tt> returned by member functions are references |
|---|
| 20 | //! to internal data members. Since each object may have only |
|---|
| 21 | //! one such data member for holding results, the following code |
|---|
| 22 | //! will produce incorrect results: |
|---|
| 23 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|---|
| 24 | //! But this should be fine: |
|---|
| 25 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|---|
| 26 | template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup |
|---|
| 27 | { |
|---|
| 28 | public: |
|---|
| 29 | typedef T Element; |
|---|
| 30 | |
|---|
| 31 | virtual ~AbstractGroup() {} |
|---|
| 32 | |
|---|
| 33 | //! \brief Compare two elements for equality |
|---|
| 34 | //! \param a first element |
|---|
| 35 | //! \param b second element |
|---|
| 36 | //! \returns true if the elements are equal, false otherwise |
|---|
| 37 | //! \details Equal() tests the elements for equality using <tt>a==b</tt> |
|---|
| 38 | virtual bool Equal(const Element &a, const Element &b) const =0; |
|---|
| 39 | |
|---|
| 40 | //! \brief Provides the Identity element |
|---|
| 41 | //! \returns the Identity element |
|---|
| 42 | virtual const Element& Identity() const =0; |
|---|
| 43 | |
|---|
| 44 | //! \brief Adds elements in the group |
|---|
| 45 | //! \param a first element |
|---|
| 46 | //! \param b second element |
|---|
| 47 | //! \returns the sum of <tt>a</tt> and <tt>b</tt> |
|---|
| 48 | virtual const Element& Add(const Element &a, const Element &b) const =0; |
|---|
| 49 | |
|---|
| 50 | //! \brief Inverts the element in the group |
|---|
| 51 | //! \param a first element |
|---|
| 52 | //! \returns the inverse of the element |
|---|
| 53 | virtual const Element& Inverse(const Element &a) const =0; |
|---|
| 54 | |
|---|
| 55 | //! \brief Determine if inversion is fast |
|---|
| 56 | //! \returns true if inversion is fast, false otherwise |
|---|
| 57 | virtual bool InversionIsFast() const {return false;} |
|---|
| 58 | |
|---|
| 59 | //! \brief Doubles an element in the group |
|---|
| 60 | //! \param a the element |
|---|
| 61 | //! \returns the element doubled |
|---|
| 62 | virtual const Element& Double(const Element &a) const; |
|---|
| 63 | |
|---|
| 64 | //! \brief Subtracts elements in the group |
|---|
| 65 | //! \param a first element |
|---|
| 66 | //! \param b second element |
|---|
| 67 | //! \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function. |
|---|
| 68 | virtual const Element& Subtract(const Element &a, const Element &b) const; |
|---|
| 69 | |
|---|
| 70 | //! \brief TODO |
|---|
| 71 | //! \param a first element |
|---|
| 72 | //! \param b second element |
|---|
| 73 | //! \returns TODO |
|---|
| 74 | virtual Element& Accumulate(Element &a, const Element &b) const; |
|---|
| 75 | |
|---|
| 76 | //! \brief Reduces an element in the congruence class |
|---|
| 77 | //! \param a element to reduce |
|---|
| 78 | //! \param b the congruence class |
|---|
| 79 | //! \returns the reduced element |
|---|
| 80 | virtual Element& Reduce(Element &a, const Element &b) const; |
|---|
| 81 | |
|---|
| 82 | //! \brief Performs a scalar multiplication |
|---|
| 83 | //! \param a multiplicand |
|---|
| 84 | //! \param e multiplier |
|---|
| 85 | //! \returns the product |
|---|
| 86 | virtual Element ScalarMultiply(const Element &a, const Integer &e) const; |
|---|
| 87 | |
|---|
| 88 | //! \brief TODO |
|---|
| 89 | //! \param x first multiplicand |
|---|
| 90 | //! \param e1 the first multiplier |
|---|
| 91 | //! \param y second multiplicand |
|---|
| 92 | //! \param e2 the second multiplier |
|---|
| 93 | //! \returns TODO |
|---|
| 94 | virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; |
|---|
| 95 | |
|---|
| 96 | //! \brief Multiplies a base to multiple exponents in a group |
|---|
| 97 | //! \param results an array of Elements |
|---|
| 98 | //! \param base the base to raise to the exponents |
|---|
| 99 | //! \param exponents an array of exponents |
|---|
| 100 | //! \param exponentsCount the number of exponents in the array |
|---|
| 101 | //! \details SimultaneousMultiply() multiplies the base to each exponent in the exponents array and stores the |
|---|
| 102 | //! result at the respective position in the results array. |
|---|
| 103 | //! \details SimultaneousMultiply() must be implemented in a derived class. |
|---|
| 104 | //! \pre <tt>COUNTOF(results) == exponentsCount</tt> |
|---|
| 105 | //! \pre <tt>COUNTOF(exponents) == exponentsCount</tt> |
|---|
| 106 | virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
|---|
| 107 | }; |
|---|
| 108 | |
|---|
| 109 | //! \brief Abstract ring |
|---|
| 110 | //! \tparam T element class or type |
|---|
| 111 | //! \details <tt>const Element&</tt> returned by member functions are references |
|---|
| 112 | //! to internal data members. Since each object may have only |
|---|
| 113 | //! one such data member for holding results, the following code |
|---|
| 114 | //! will produce incorrect results: |
|---|
| 115 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|---|
| 116 | //! But this should be fine: |
|---|
| 117 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|---|
| 118 | template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T> |
|---|
| 119 | { |
|---|
| 120 | public: |
|---|
| 121 | typedef T Element; |
|---|
| 122 | |
|---|
| 123 | //! \brief Construct an AbstractRing |
|---|
| 124 | AbstractRing() {m_mg.m_pRing = this;} |
|---|
| 125 | |
|---|
| 126 | //! \brief Copy construct an AbstractRing |
|---|
| 127 | //! \param source other AbstractRing |
|---|
| 128 | AbstractRing(const AbstractRing &source) |
|---|
| 129 | {CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;} |
|---|
| 130 | |
|---|
| 131 | //! \brief Assign an AbstractRing |
|---|
| 132 | //! \param source other AbstractRing |
|---|
| 133 | AbstractRing& operator=(const AbstractRing &source) |
|---|
| 134 | {CRYPTOPP_UNUSED(source); return *this;} |
|---|
| 135 | |
|---|
| 136 | //! \brief Determines whether an element is a unit in the group |
|---|
| 137 | //! \param a the element |
|---|
| 138 | //! \returns true if the element is a unit after reduction, false otherwise. |
|---|
| 139 | virtual bool IsUnit(const Element &a) const =0; |
|---|
| 140 | |
|---|
| 141 | //! \brief Retrieves the multiplicative identity |
|---|
| 142 | //! \returns the multiplicative identity |
|---|
| 143 | virtual const Element& MultiplicativeIdentity() const =0; |
|---|
| 144 | |
|---|
| 145 | //! \brief Multiplies elements in the group |
|---|
| 146 | //! \param a the multiplicand |
|---|
| 147 | //! \param b the multiplier |
|---|
| 148 | //! \returns the product of a and b |
|---|
| 149 | virtual const Element& Multiply(const Element &a, const Element &b) const =0; |
|---|
| 150 | |
|---|
| 151 | //! \brief Calculate the multiplicative inverse of an element in the group |
|---|
| 152 | //! \param a the element |
|---|
| 153 | virtual const Element& MultiplicativeInverse(const Element &a) const =0; |
|---|
| 154 | |
|---|
| 155 | //! \brief Square an element in the group |
|---|
| 156 | //! \param a the element |
|---|
| 157 | //! \returns the element squared |
|---|
| 158 | virtual const Element& Square(const Element &a) const; |
|---|
| 159 | |
|---|
| 160 | //! \brief Divides elements in the group |
|---|
| 161 | //! \param a the dividend |
|---|
| 162 | //! \param b the divisor |
|---|
| 163 | //! \returns the quotient |
|---|
| 164 | virtual const Element& Divide(const Element &a, const Element &b) const; |
|---|
| 165 | |
|---|
| 166 | //! \brief Raises a base to an exponent in the group |
|---|
| 167 | //! \param a the base |
|---|
| 168 | //! \param e the exponent |
|---|
| 169 | //! \returns the exponentiation |
|---|
| 170 | virtual Element Exponentiate(const Element &a, const Integer &e) const; |
|---|
| 171 | |
|---|
| 172 | //! \brief TODO |
|---|
| 173 | //! \param x first element |
|---|
| 174 | //! \param e1 first exponent |
|---|
| 175 | //! \param y second element |
|---|
| 176 | //! \param e2 second exponent |
|---|
| 177 | //! \returns TODO |
|---|
| 178 | virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; |
|---|
| 179 | |
|---|
| 180 | //! \brief Exponentiates a base to multiple exponents in the Ring |
|---|
| 181 | //! \param results an array of Elements |
|---|
| 182 | //! \param base the base to raise to the exponents |
|---|
| 183 | //! \param exponents an array of exponents |
|---|
| 184 | //! \param exponentsCount the number of exponents in the array |
|---|
| 185 | //! \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the |
|---|
| 186 | //! result at the respective position in the results array. |
|---|
| 187 | //! \details SimultaneousExponentiate() must be implemented in a derived class. |
|---|
| 188 | //! \pre <tt>COUNTOF(results) == exponentsCount</tt> |
|---|
| 189 | //! \pre <tt>COUNTOF(exponents) == exponentsCount</tt> |
|---|
| 190 | virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; |
|---|
| 191 | |
|---|
| 192 | //! \brief Retrieves the multiplicative group |
|---|
| 193 | //! \returns the multiplicative group |
|---|
| 194 | virtual const AbstractGroup<T>& MultiplicativeGroup() const |
|---|
| 195 | {return m_mg;} |
|---|
| 196 | |
|---|
| 197 | private: |
|---|
| 198 | class MultiplicativeGroupT : public AbstractGroup<T> |
|---|
| 199 | { |
|---|
| 200 | public: |
|---|
| 201 | const AbstractRing<T>& GetRing() const |
|---|
| 202 | {return *m_pRing;} |
|---|
| 203 | |
|---|
| 204 | bool Equal(const Element &a, const Element &b) const |
|---|
| 205 | {return GetRing().Equal(a, b);} |
|---|
| 206 | |
|---|
| 207 | const Element& Identity() const |
|---|
| 208 | {return GetRing().MultiplicativeIdentity();} |
|---|
| 209 | |
|---|
| 210 | const Element& Add(const Element &a, const Element &b) const |
|---|
| 211 | {return GetRing().Multiply(a, b);} |
|---|
| 212 | |
|---|
| 213 | Element& Accumulate(Element &a, const Element &b) const |
|---|
| 214 | {return a = GetRing().Multiply(a, b);} |
|---|
| 215 | |
|---|
| 216 | const Element& Inverse(const Element &a) const |
|---|
| 217 | {return GetRing().MultiplicativeInverse(a);} |
|---|
| 218 | |
|---|
| 219 | const Element& Subtract(const Element &a, const Element &b) const |
|---|
| 220 | {return GetRing().Divide(a, b);} |
|---|
| 221 | |
|---|
| 222 | Element& Reduce(Element &a, const Element &b) const |
|---|
| 223 | {return a = GetRing().Divide(a, b);} |
|---|
| 224 | |
|---|
| 225 | const Element& Double(const Element &a) const |
|---|
| 226 | {return GetRing().Square(a);} |
|---|
| 227 | |
|---|
| 228 | Element ScalarMultiply(const Element &a, const Integer &e) const |
|---|
| 229 | {return GetRing().Exponentiate(a, e);} |
|---|
| 230 | |
|---|
| 231 | Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
|---|
| 232 | {return GetRing().CascadeExponentiate(x, e1, y, e2);} |
|---|
| 233 | |
|---|
| 234 | void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
|---|
| 235 | {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);} |
|---|
| 236 | |
|---|
| 237 | const AbstractRing<T> *m_pRing; |
|---|
| 238 | }; |
|---|
| 239 | |
|---|
| 240 | MultiplicativeGroupT m_mg; |
|---|
| 241 | }; |
|---|
| 242 | |
|---|
| 243 | // ******************************************************** |
|---|
| 244 | |
|---|
| 245 | //! \brief Base and exponent |
|---|
| 246 | //! \tparam T base class or type |
|---|
| 247 | //! \tparam T exponent class or type |
|---|
| 248 | template <class T, class E = Integer> |
|---|
| 249 | struct BaseAndExponent |
|---|
| 250 | { |
|---|
| 251 | public: |
|---|
| 252 | BaseAndExponent() {} |
|---|
| 253 | BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {} |
|---|
| 254 | bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;} |
|---|
| 255 | T base; |
|---|
| 256 | E exponent; |
|---|
| 257 | }; |
|---|
| 258 | |
|---|
| 259 | // VC60 workaround: incomplete member template support |
|---|
| 260 | template <class Element, class Iterator> |
|---|
| 261 | Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end); |
|---|
| 262 | template <class Element, class Iterator> |
|---|
| 263 | Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end); |
|---|
| 264 | |
|---|
| 265 | // ******************************************************** |
|---|
| 266 | |
|---|
| 267 | //! \brief Abstract Euclidean domain |
|---|
| 268 | //! \tparam T element class or type |
|---|
| 269 | //! \details <tt>const Element&</tt> returned by member functions are references |
|---|
| 270 | //! to internal data members. Since each object may have only |
|---|
| 271 | //! one such data member for holding results, the following code |
|---|
| 272 | //! will produce incorrect results: |
|---|
| 273 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|---|
| 274 | //! But this should be fine: |
|---|
| 275 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|---|
| 276 | template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T> |
|---|
| 277 | { |
|---|
| 278 | public: |
|---|
| 279 | typedef T Element; |
|---|
| 280 | |
|---|
| 281 | //! \brief Performs the division algorithm on two elements in the ring |
|---|
| 282 | //! \param r the remainder |
|---|
| 283 | //! \param q the quotient |
|---|
| 284 | //! \param a the dividend |
|---|
| 285 | //! \param d the divisor |
|---|
| 286 | virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0; |
|---|
| 287 | |
|---|
| 288 | //! \brief Performs a modular reduction in the ring |
|---|
| 289 | //! \param a the element |
|---|
| 290 | //! \param b the modulus |
|---|
| 291 | //! \returns the result of <tt>a%b</tt>. |
|---|
| 292 | virtual const Element& Mod(const Element &a, const Element &b) const =0; |
|---|
| 293 | |
|---|
| 294 | //! \brief Calculates the greatest common denominator in the ring |
|---|
| 295 | //! \param a the first element |
|---|
| 296 | //! \param b the second element |
|---|
| 297 | //! \returns the the greatest common denominator of a and b. |
|---|
| 298 | virtual const Element& Gcd(const Element &a, const Element &b) const; |
|---|
| 299 | |
|---|
| 300 | protected: |
|---|
| 301 | mutable Element result; |
|---|
| 302 | }; |
|---|
| 303 | |
|---|
| 304 | // ******************************************************** |
|---|
| 305 | |
|---|
| 306 | //! \brief Euclidean domain |
|---|
| 307 | //! \tparam T element class or type |
|---|
| 308 | //! \details <tt>const Element&</tt> returned by member functions are references |
|---|
| 309 | //! to internal data members. Since each object may have only |
|---|
| 310 | //! one such data member for holding results, the following code |
|---|
| 311 | //! will produce incorrect results: |
|---|
| 312 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|---|
| 313 | //! But this should be fine: |
|---|
| 314 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|---|
| 315 | template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T> |
|---|
| 316 | { |
|---|
| 317 | public: |
|---|
| 318 | typedef T Element; |
|---|
| 319 | |
|---|
| 320 | EuclideanDomainOf() {} |
|---|
| 321 | |
|---|
| 322 | bool Equal(const Element &a, const Element &b) const |
|---|
| 323 | {return a==b;} |
|---|
| 324 | |
|---|
| 325 | const Element& Identity() const |
|---|
| 326 | {return Element::Zero();} |
|---|
| 327 | |
|---|
| 328 | const Element& Add(const Element &a, const Element &b) const |
|---|
| 329 | {return result = a+b;} |
|---|
| 330 | |
|---|
| 331 | Element& Accumulate(Element &a, const Element &b) const |
|---|
| 332 | {return a+=b;} |
|---|
| 333 | |
|---|
| 334 | const Element& Inverse(const Element &a) const |
|---|
| 335 | {return result = -a;} |
|---|
| 336 | |
|---|
| 337 | const Element& Subtract(const Element &a, const Element &b) const |
|---|
| 338 | {return result = a-b;} |
|---|
| 339 | |
|---|
| 340 | Element& Reduce(Element &a, const Element &b) const |
|---|
| 341 | {return a-=b;} |
|---|
| 342 | |
|---|
| 343 | const Element& Double(const Element &a) const |
|---|
| 344 | {return result = a.Doubled();} |
|---|
| 345 | |
|---|
| 346 | const Element& MultiplicativeIdentity() const |
|---|
| 347 | {return Element::One();} |
|---|
| 348 | |
|---|
| 349 | const Element& Multiply(const Element &a, const Element &b) const |
|---|
| 350 | {return result = a*b;} |
|---|
| 351 | |
|---|
| 352 | const Element& Square(const Element &a) const |
|---|
| 353 | {return result = a.Squared();} |
|---|
| 354 | |
|---|
| 355 | bool IsUnit(const Element &a) const |
|---|
| 356 | {return a.IsUnit();} |
|---|
| 357 | |
|---|
| 358 | const Element& MultiplicativeInverse(const Element &a) const |
|---|
| 359 | {return result = a.MultiplicativeInverse();} |
|---|
| 360 | |
|---|
| 361 | const Element& Divide(const Element &a, const Element &b) const |
|---|
| 362 | {return result = a/b;} |
|---|
| 363 | |
|---|
| 364 | const Element& Mod(const Element &a, const Element &b) const |
|---|
| 365 | {return result = a%b;} |
|---|
| 366 | |
|---|
| 367 | void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const |
|---|
| 368 | {Element::Divide(r, q, a, d);} |
|---|
| 369 | |
|---|
| 370 | bool operator==(const EuclideanDomainOf<T> &rhs) const |
|---|
| 371 | {CRYPTOPP_UNUSED(rhs); return true;} |
|---|
| 372 | |
|---|
| 373 | private: |
|---|
| 374 | mutable Element result; |
|---|
| 375 | }; |
|---|
| 376 | |
|---|
| 377 | //! \brief Quotient ring |
|---|
| 378 | //! \tparam T element class or type |
|---|
| 379 | //! \details <tt>const Element&</tt> returned by member functions are references |
|---|
| 380 | //! to internal data members. Since each object may have only |
|---|
| 381 | //! one such data member for holding results, the following code |
|---|
| 382 | //! will produce incorrect results: |
|---|
| 383 | //! <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre> |
|---|
| 384 | //! But this should be fine: |
|---|
| 385 | //! <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre> |
|---|
| 386 | template <class T> class QuotientRing : public AbstractRing<typename T::Element> |
|---|
| 387 | { |
|---|
| 388 | public: |
|---|
| 389 | typedef T EuclideanDomain; |
|---|
| 390 | typedef typename T::Element Element; |
|---|
| 391 | |
|---|
| 392 | QuotientRing(const EuclideanDomain &domain, const Element &modulus) |
|---|
| 393 | : m_domain(domain), m_modulus(modulus) {} |
|---|
| 394 | |
|---|
| 395 | const EuclideanDomain & GetDomain() const |
|---|
| 396 | {return m_domain;} |
|---|
| 397 | |
|---|
| 398 | const Element& GetModulus() const |
|---|
| 399 | {return m_modulus;} |
|---|
| 400 | |
|---|
| 401 | bool Equal(const Element &a, const Element &b) const |
|---|
| 402 | {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());} |
|---|
| 403 | |
|---|
| 404 | const Element& Identity() const |
|---|
| 405 | {return m_domain.Identity();} |
|---|
| 406 | |
|---|
| 407 | const Element& Add(const Element &a, const Element &b) const |
|---|
| 408 | {return m_domain.Add(a, b);} |
|---|
| 409 | |
|---|
| 410 | Element& Accumulate(Element &a, const Element &b) const |
|---|
| 411 | {return m_domain.Accumulate(a, b);} |
|---|
| 412 | |
|---|
| 413 | const Element& Inverse(const Element &a) const |
|---|
| 414 | {return m_domain.Inverse(a);} |
|---|
| 415 | |
|---|
| 416 | const Element& Subtract(const Element &a, const Element &b) const |
|---|
| 417 | {return m_domain.Subtract(a, b);} |
|---|
| 418 | |
|---|
| 419 | Element& Reduce(Element &a, const Element &b) const |
|---|
| 420 | {return m_domain.Reduce(a, b);} |
|---|
| 421 | |
|---|
| 422 | const Element& Double(const Element &a) const |
|---|
| 423 | {return m_domain.Double(a);} |
|---|
| 424 | |
|---|
| 425 | bool IsUnit(const Element &a) const |
|---|
| 426 | {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));} |
|---|
| 427 | |
|---|
| 428 | const Element& MultiplicativeIdentity() const |
|---|
| 429 | {return m_domain.MultiplicativeIdentity();} |
|---|
| 430 | |
|---|
| 431 | const Element& Multiply(const Element &a, const Element &b) const |
|---|
| 432 | {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);} |
|---|
| 433 | |
|---|
| 434 | const Element& Square(const Element &a) const |
|---|
| 435 | {return m_domain.Mod(m_domain.Square(a), m_modulus);} |
|---|
| 436 | |
|---|
| 437 | const Element& MultiplicativeInverse(const Element &a) const; |
|---|
| 438 | |
|---|
| 439 | bool operator==(const QuotientRing<T> &rhs) const |
|---|
| 440 | {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;} |
|---|
| 441 | |
|---|
| 442 | protected: |
|---|
| 443 | EuclideanDomain m_domain; |
|---|
| 444 | Element m_modulus; |
|---|
| 445 | }; |
|---|
| 446 | |
|---|
| 447 | NAMESPACE_END |
|---|
| 448 | |
|---|
| 449 | #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES |
|---|
| 450 | #include "algebra.cpp" |
|---|
| 451 | #endif |
|---|
| 452 | |
|---|
| 453 | #endif |
|---|