| 1 | |
|---|
| 2 | // misc.h - written and placed in the public domain by Wei Dai |
|---|
| 3 | |
|---|
| 4 | //! \file misc.h |
|---|
| 5 | //! \brief Utility functions for the Crypto++ library. |
|---|
| 6 | |
|---|
| 7 | #ifndef CRYPTOPP_MISC_H |
|---|
| 8 | #define CRYPTOPP_MISC_H |
|---|
| 9 | |
|---|
| 10 | #include "config.h" |
|---|
| 11 | |
|---|
| 12 | #if !CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 13 | |
|---|
| 14 | #if CRYPTOPP_MSC_VERSION |
|---|
| 15 | # pragma warning(push) |
|---|
| 16 | # pragma warning(disable: 4146 4514) |
|---|
| 17 | # if (CRYPTOPP_MSC_VERSION >= 1400) |
|---|
| 18 | # pragma warning(disable: 6326) |
|---|
| 19 | # endif |
|---|
| 20 | #endif |
|---|
| 21 | |
|---|
| 22 | #include "cryptlib.h" |
|---|
| 23 | #include "stdcpp.h" |
|---|
| 24 | #include "smartptr.h" |
|---|
| 25 | |
|---|
| 26 | #ifdef _MSC_VER |
|---|
| 27 | #if _MSC_VER >= 1400 |
|---|
| 28 | // VC2005 workaround: disable declarations that conflict with winnt.h |
|---|
| 29 | #define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1 |
|---|
| 30 | #define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2 |
|---|
| 31 | #define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3 |
|---|
| 32 | #define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4 |
|---|
| 33 | #include <intrin.h> |
|---|
| 34 | #undef _interlockedbittestandset |
|---|
| 35 | #undef _interlockedbittestandreset |
|---|
| 36 | #undef _interlockedbittestandset64 |
|---|
| 37 | #undef _interlockedbittestandreset64 |
|---|
| 38 | #define CRYPTOPP_FAST_ROTATE(x) 1 |
|---|
| 39 | #elif _MSC_VER >= 1300 |
|---|
| 40 | #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64) |
|---|
| 41 | #else |
|---|
| 42 | #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) |
|---|
| 43 | #endif |
|---|
| 44 | #elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \ |
|---|
| 45 | (defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM))) |
|---|
| 46 | #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) |
|---|
| 47 | #elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions |
|---|
| 48 | #define CRYPTOPP_FAST_ROTATE(x) 1 |
|---|
| 49 | #else |
|---|
| 50 | #define CRYPTOPP_FAST_ROTATE(x) 0 |
|---|
| 51 | #endif |
|---|
| 52 | |
|---|
| 53 | #ifdef __BORLANDC__ |
|---|
| 54 | #include <mem.h> |
|---|
| 55 | #include <stdlib.h> |
|---|
| 56 | #endif |
|---|
| 57 | |
|---|
| 58 | #if defined(__GNUC__) && defined(__linux__) |
|---|
| 59 | #define CRYPTOPP_BYTESWAP_AVAILABLE |
|---|
| 60 | #include <byteswap.h> |
|---|
| 61 | #endif |
|---|
| 62 | |
|---|
| 63 | #if defined(__GNUC__) && defined(__BMI__) |
|---|
| 64 | # include <immintrin.h> |
|---|
| 65 | # if defined(__clang__) |
|---|
| 66 | # ifndef _tzcnt_u32 |
|---|
| 67 | # define _tzcnt_u32(x) __tzcnt_u32(x) |
|---|
| 68 | # endif |
|---|
| 69 | # ifndef _blsr_u32 |
|---|
| 70 | # define _blsr_u32(x) __blsr_u32(x) |
|---|
| 71 | # endif |
|---|
| 72 | # ifdef __x86_64__ |
|---|
| 73 | # ifndef _tzcnt_u64 |
|---|
| 74 | # define _tzcnt_u64(x) __tzcnt_u64(x) |
|---|
| 75 | # endif |
|---|
| 76 | # ifndef _blsr_u64 |
|---|
| 77 | # define _blsr_u64(x) __blsr_u64(x) |
|---|
| 78 | # endif |
|---|
| 79 | # endif // x86_64 |
|---|
| 80 | # endif // Clang |
|---|
| 81 | #endif // GNUC and BMI |
|---|
| 82 | |
|---|
| 83 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 84 | |
|---|
| 85 | #if CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 86 | //! \brief The maximum value of a machine word |
|---|
| 87 | //! \details SIZE_MAX provides the maximum value of a machine word. The value is |
|---|
| 88 | //! \p 0xffffffff on 32-bit machines, and \p 0xffffffffffffffff on 64-bit machines. |
|---|
| 89 | //! Internally, SIZE_MAX is defined as __SIZE_MAX__ if __SIZE_MAX__ is defined. If not |
|---|
| 90 | //! defined, then SIZE_T_MAX is tried. If neither __SIZE_MAX__ nor SIZE_T_MAX is |
|---|
| 91 | //! is defined, the library uses std::numeric_limits<size_t>::max(). The library |
|---|
| 92 | //! prefers __SIZE_MAX__ because its a constexpr that is optimized well |
|---|
| 93 | //! by all compilers. std::numeric_limits<size_t>::max() is \a not a constexpr, |
|---|
| 94 | //! and it is \a not always optimized well. |
|---|
| 95 | # define SIZE_MAX ... |
|---|
| 96 | #else |
|---|
| 97 | // Its amazing portability problems still plague this simple concept in 2015. |
|---|
| 98 | // http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max |
|---|
| 99 | // Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208 |
|---|
| 100 | #ifndef SIZE_MAX |
|---|
| 101 | # if defined(__SIZE_MAX__) && (__SIZE_MAX__ > 0) |
|---|
| 102 | # define SIZE_MAX __SIZE_MAX__ |
|---|
| 103 | # elif defined(SIZE_T_MAX) && (SIZE_T_MAX > 0) |
|---|
| 104 | # define SIZE_MAX SIZE_T_MAX |
|---|
| 105 | # else |
|---|
| 106 | # define SIZE_MAX ((std::numeric_limits<size_t>::max)()) |
|---|
| 107 | # endif |
|---|
| 108 | #endif |
|---|
| 109 | |
|---|
| 110 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 111 | |
|---|
| 112 | NAMESPACE_BEGIN(CryptoPP) |
|---|
| 113 | |
|---|
| 114 | // Forward declaration for IntToString specialization |
|---|
| 115 | class Integer; |
|---|
| 116 | |
|---|
| 117 | // ************** compile-time assertion *************** |
|---|
| 118 | |
|---|
| 119 | #if CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 120 | //! \brief Compile time assertion |
|---|
| 121 | //! \param expr the expression to evaluate |
|---|
| 122 | //! \details Asserts the expression expr though a dummy struct. |
|---|
| 123 | #define CRYPTOPP_COMPILE_ASSERT(expr) { ... } |
|---|
| 124 | #else // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 125 | template <bool b> |
|---|
| 126 | struct CompileAssert |
|---|
| 127 | { |
|---|
| 128 | static char dummy[2*b-1]; |
|---|
| 129 | }; |
|---|
| 130 | //! \endif |
|---|
| 131 | |
|---|
| 132 | #define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__) |
|---|
| 133 | #if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS) |
|---|
| 134 | #define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) |
|---|
| 135 | #else |
|---|
| 136 | # if defined(__GNUC__) |
|---|
| 137 | # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \ |
|---|
| 138 | static CompileAssert<(assertion)> \ |
|---|
| 139 | CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) __attribute__ ((unused)) |
|---|
| 140 | # else |
|---|
| 141 | # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \ |
|---|
| 142 | static CompileAssert<(assertion)> \ |
|---|
| 143 | CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) |
|---|
| 144 | # endif // __GNUC__ |
|---|
| 145 | #endif |
|---|
| 146 | #define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y) |
|---|
| 147 | #define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y |
|---|
| 148 | |
|---|
| 149 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 150 | |
|---|
| 151 | // ************** count elements in an array *************** |
|---|
| 152 | |
|---|
| 153 | #if CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 154 | //! \brief Counts elements in an array |
|---|
| 155 | //! \param arr an array of elements |
|---|
| 156 | //! \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined |
|---|
| 157 | //! to <tt>_countof(x)</tt> to ensure correct results for pointers. |
|---|
| 158 | //! \note COUNTOF does not produce correct results with pointers, and an array must be used. |
|---|
| 159 | //! <tt>sizeof(x)/sizeof(x[0])</tt> suffers the same problem. The risk is eliminated by using |
|---|
| 160 | //! <tt>_countof(x)</tt> on Windows. Windows will provide the immunity for other platforms. |
|---|
| 161 | # define COUNTOF(arr) |
|---|
| 162 | #else |
|---|
| 163 | // VS2005 added _countof |
|---|
| 164 | #ifndef COUNTOF |
|---|
| 165 | # if defined(_MSC_VER) && (_MSC_VER >= 1400) |
|---|
| 166 | # define COUNTOF(x) _countof(x) |
|---|
| 167 | # else |
|---|
| 168 | # define COUNTOF(x) (sizeof(x)/sizeof(x[0])) |
|---|
| 169 | # endif |
|---|
| 170 | #endif // COUNTOF |
|---|
| 171 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 172 | |
|---|
| 173 | // ************** misc classes *************** |
|---|
| 174 | |
|---|
| 175 | //! \brief An Empty class |
|---|
| 176 | //! \details The Empty class can be used as a template parameter <tt>BASE</tt> when no base class exists. |
|---|
| 177 | class CRYPTOPP_DLL Empty |
|---|
| 178 | { |
|---|
| 179 | }; |
|---|
| 180 | |
|---|
| 181 | #if !CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 182 | template <class BASE1, class BASE2> |
|---|
| 183 | class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2 |
|---|
| 184 | { |
|---|
| 185 | }; |
|---|
| 186 | |
|---|
| 187 | template <class BASE1, class BASE2, class BASE3> |
|---|
| 188 | class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3 |
|---|
| 189 | { |
|---|
| 190 | }; |
|---|
| 191 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 192 | |
|---|
| 193 | //! \class ObjectHolder |
|---|
| 194 | //! \tparam the class or type |
|---|
| 195 | //! \brief Uses encapsulation to hide an object in derived classes |
|---|
| 196 | //! \details The object T is declared as protected. |
|---|
| 197 | template <class T> |
|---|
| 198 | class ObjectHolder |
|---|
| 199 | { |
|---|
| 200 | protected: |
|---|
| 201 | T m_object; |
|---|
| 202 | }; |
|---|
| 203 | |
|---|
| 204 | //! \class NotCopyable |
|---|
| 205 | //! \brief Ensures an object is not copyable |
|---|
| 206 | //! \details NotCopyable ensures an object is not copyable by making the |
|---|
| 207 | //! copy constructor and assignment operator private. Deleters are not |
|---|
| 208 | //! used under C++11. |
|---|
| 209 | //! \sa Clonable class |
|---|
| 210 | class NotCopyable |
|---|
| 211 | { |
|---|
| 212 | public: |
|---|
| 213 | NotCopyable() {} |
|---|
| 214 | private: |
|---|
| 215 | NotCopyable(const NotCopyable &); |
|---|
| 216 | void operator=(const NotCopyable &); |
|---|
| 217 | }; |
|---|
| 218 | |
|---|
| 219 | //! \class NewObject |
|---|
| 220 | //! \brief An object factory function |
|---|
| 221 | //! \details NewObject overloads operator()(). |
|---|
| 222 | template <class T> |
|---|
| 223 | struct NewObject |
|---|
| 224 | { |
|---|
| 225 | T* operator()() const {return new T;} |
|---|
| 226 | }; |
|---|
| 227 | |
|---|
| 228 | #if CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 229 | //! \brief A memory barrier |
|---|
| 230 | //! \details MEMORY_BARRIER attempts to ensure reads and writes are completed |
|---|
| 231 | //! in the absence of a language synchronization point. It is used by the |
|---|
| 232 | //! Singleton class if the compiler supports it. The barrier is provided at the |
|---|
| 233 | //! customary places in a double-checked initialization. |
|---|
| 234 | //! \details Internally, MEMORY_BARRIER uses <tt>std::atomic_thread_fence</tt> if |
|---|
| 235 | //! C++11 atomics are available. Otherwise, <tt>intrinsic(_ReadWriteBarrier)</tt>, |
|---|
| 236 | //! <tt>_ReadWriteBarrier()</tt> or <tt>__asm__("" ::: "memory")</tt> is used. |
|---|
| 237 | #define MEMORY_BARRIER ... |
|---|
| 238 | #else |
|---|
| 239 | #if defined(CRYPTOPP_CXX11_ATOMICS) |
|---|
| 240 | # define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel) |
|---|
| 241 | #elif (_MSC_VER >= 1400) |
|---|
| 242 | # pragma intrinsic(_ReadWriteBarrier) |
|---|
| 243 | # define MEMORY_BARRIER() _ReadWriteBarrier() |
|---|
| 244 | #elif defined(__INTEL_COMPILER) |
|---|
| 245 | # define MEMORY_BARRIER() __memory_barrier() |
|---|
| 246 | #elif defined(__GNUC__) || defined(__clang__) |
|---|
| 247 | # define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory") |
|---|
| 248 | #else |
|---|
| 249 | # define MEMORY_BARRIER() |
|---|
| 250 | #endif |
|---|
| 251 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 252 | |
|---|
| 253 | //! \brief Restricts the instantiation of a class to one static object without locks |
|---|
| 254 | //! \tparam T the class or type |
|---|
| 255 | //! \tparam F the object factory for T |
|---|
| 256 | //! \tparam instance the initiali instance count |
|---|
| 257 | //! \details This class safely initializes a static object in a multithreaded environment. For C++03 |
|---|
| 258 | //! and below it will do so without using locks for portability. If two threads call Ref() at the same |
|---|
| 259 | //! time, they may get back different references, and one object may end up being memory leaked. This |
|---|
| 260 | //! is by design and it avoids a subltle initialization problem ina multithreaded environment with thread |
|---|
| 261 | //! local storage on early Windows platforms, like Windows XP and Windows 2003. |
|---|
| 262 | //! \details For C++11 and above, a standard double-checked locking pattern with thread fences |
|---|
| 263 | //! are used. The locks and fences are standard and do not hinder portability. |
|---|
| 264 | //! \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked |
|---|
| 265 | //! Locking is Fixed In C++11</A> |
|---|
| 266 | template <class T, class F = NewObject<T>, int instance=0> |
|---|
| 267 | class Singleton |
|---|
| 268 | { |
|---|
| 269 | public: |
|---|
| 270 | Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {} |
|---|
| 271 | |
|---|
| 272 | // prevent this function from being inlined |
|---|
| 273 | CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const; |
|---|
| 274 | |
|---|
| 275 | private: |
|---|
| 276 | F m_objectFactory; |
|---|
| 277 | }; |
|---|
| 278 | |
|---|
| 279 | //! \brief Return a reference to the inner Singleton object |
|---|
| 280 | //! \details Ref() is used to create the object using the object factory. The |
|---|
| 281 | //! object is only created once with the limitations discussed in the class documentation. |
|---|
| 282 | //! \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A> |
|---|
| 283 | #if defined(CRYPTOPP_CXX11_ATOMICS) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION) |
|---|
| 284 | template <class T, class F, int instance> |
|---|
| 285 | const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const |
|---|
| 286 | { |
|---|
| 287 | static std::mutex s_mutex; |
|---|
| 288 | static std::atomic<T*> s_pObject; |
|---|
| 289 | |
|---|
| 290 | T *p = s_pObject.load(std::memory_order_relaxed); |
|---|
| 291 | std::atomic_thread_fence(std::memory_order_acquire); |
|---|
| 292 | |
|---|
| 293 | if (p) |
|---|
| 294 | return *p; |
|---|
| 295 | |
|---|
| 296 | std::lock_guard<std::mutex> lock(s_mutex); |
|---|
| 297 | p = s_pObject.load(std::memory_order_relaxed); |
|---|
| 298 | std::atomic_thread_fence(std::memory_order_acquire); |
|---|
| 299 | |
|---|
| 300 | if (p) |
|---|
| 301 | return *p; |
|---|
| 302 | |
|---|
| 303 | T *newObject = m_objectFactory(); |
|---|
| 304 | s_pObject.store(newObject, std::memory_order_relaxed); |
|---|
| 305 | std::atomic_thread_fence(std::memory_order_release); |
|---|
| 306 | |
|---|
| 307 | return *newObject; |
|---|
| 308 | } |
|---|
| 309 | #else |
|---|
| 310 | template <class T, class F, int instance> |
|---|
| 311 | const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const |
|---|
| 312 | { |
|---|
| 313 | static volatile simple_ptr<T> s_pObject; |
|---|
| 314 | T *p = s_pObject.m_p; |
|---|
| 315 | MEMORY_BARRIER(); |
|---|
| 316 | |
|---|
| 317 | if (p) |
|---|
| 318 | return *p; |
|---|
| 319 | |
|---|
| 320 | T *newObject = m_objectFactory(); |
|---|
| 321 | p = s_pObject.m_p; |
|---|
| 322 | MEMORY_BARRIER(); |
|---|
| 323 | |
|---|
| 324 | if (p) |
|---|
| 325 | { |
|---|
| 326 | delete newObject; |
|---|
| 327 | return *p; |
|---|
| 328 | } |
|---|
| 329 | |
|---|
| 330 | s_pObject.m_p = newObject; |
|---|
| 331 | MEMORY_BARRIER(); |
|---|
| 332 | |
|---|
| 333 | return *newObject; |
|---|
| 334 | } |
|---|
| 335 | #endif |
|---|
| 336 | |
|---|
| 337 | // ************** misc functions *************** |
|---|
| 338 | |
|---|
| 339 | #if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB) |
|---|
| 340 | |
|---|
| 341 | //! \brief Bounds checking replacement for memcpy() |
|---|
| 342 | //! \param dest pointer to the desination memory block |
|---|
| 343 | //! \param sizeInBytes the size of the desination memory block, in bytes |
|---|
| 344 | //! \param src pointer to the source memory block |
|---|
| 345 | //! \param count the size of the source memory block, in bytes |
|---|
| 346 | //! \throws InvalidArgument |
|---|
| 347 | //! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially |
|---|
| 348 | //! unsafe functions like memcpy(), strcpy() and memmove(). However, |
|---|
| 349 | //! not all standard libraries provides them, like Glibc. The library's |
|---|
| 350 | //! memcpy_s() is a near-drop in replacement. Its only a near-replacement |
|---|
| 351 | //! because the library's version throws an InvalidArgument on a bounds violation. |
|---|
| 352 | //! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__. |
|---|
| 353 | //! If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library |
|---|
| 354 | //! makes memcpy_s() and memmove_s() available. The library will also optionally |
|---|
| 355 | //! make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined. |
|---|
| 356 | //! <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default. |
|---|
| 357 | //! \details memcpy_s() will assert the pointers src and dest are not NULL |
|---|
| 358 | //! in debug builds. Passing NULL for either pointer is undefined behavior. |
|---|
| 359 | inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count) |
|---|
| 360 | { |
|---|
| 361 | // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55 |
|---|
| 362 | |
|---|
| 363 | // Pointers must be valid; otherwise undefined behavior |
|---|
| 364 | CRYPTOPP_ASSERT(dest != NULL); CRYPTOPP_ASSERT(src != NULL); |
|---|
| 365 | // Destination buffer must be large enough to satsify request |
|---|
| 366 | CRYPTOPP_ASSERT(sizeInBytes >= count); |
|---|
| 367 | if (count > sizeInBytes) |
|---|
| 368 | throw InvalidArgument("memcpy_s: buffer overflow"); |
|---|
| 369 | |
|---|
| 370 | #if CRYPTOPP_MSC_VERSION |
|---|
| 371 | # pragma warning(push) |
|---|
| 372 | # pragma warning(disable: 4996) |
|---|
| 373 | # if (CRYPTOPP_MSC_VERSION >= 1400) |
|---|
| 374 | # pragma warning(disable: 6386) |
|---|
| 375 | # endif |
|---|
| 376 | #endif |
|---|
| 377 | memcpy(dest, src, count); |
|---|
| 378 | #if CRYPTOPP_MSC_VERSION |
|---|
| 379 | # pragma warning(pop) |
|---|
| 380 | #endif |
|---|
| 381 | } |
|---|
| 382 | |
|---|
| 383 | //! \brief Bounds checking replacement for memmove() |
|---|
| 384 | //! \param dest pointer to the desination memory block |
|---|
| 385 | //! \param sizeInBytes the size of the desination memory block, in bytes |
|---|
| 386 | //! \param src pointer to the source memory block |
|---|
| 387 | //! \param count the size of the source memory block, in bytes |
|---|
| 388 | //! \throws InvalidArgument |
|---|
| 389 | //! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially |
|---|
| 390 | //! unsafe functions like memcpy(), strcpy() and memmove(). However, |
|---|
| 391 | //! not all standard libraries provides them, like Glibc. The library's |
|---|
| 392 | //! memmove_s() is a near-drop in replacement. Its only a near-replacement |
|---|
| 393 | //! because the library's version throws an InvalidArgument on a bounds violation. |
|---|
| 394 | //! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__. |
|---|
| 395 | //! If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library |
|---|
| 396 | //! makes memcpy_s() and memmove_s() available. The library will also optionally |
|---|
| 397 | //! make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined. |
|---|
| 398 | //! <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default. |
|---|
| 399 | //! \details memmove_s() will assert the pointers src and dest are not NULL |
|---|
| 400 | //! in debug builds. Passing NULL for either pointer is undefined behavior. |
|---|
| 401 | inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count) |
|---|
| 402 | { |
|---|
| 403 | // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55 |
|---|
| 404 | |
|---|
| 405 | // Pointers must be valid; otherwise undefined behavior |
|---|
| 406 | CRYPTOPP_ASSERT(dest != NULL); CRYPTOPP_ASSERT(src != NULL); |
|---|
| 407 | // Destination buffer must be large enough to satsify request |
|---|
| 408 | CRYPTOPP_ASSERT(sizeInBytes >= count); |
|---|
| 409 | if (count > sizeInBytes) |
|---|
| 410 | throw InvalidArgument("memmove_s: buffer overflow"); |
|---|
| 411 | |
|---|
| 412 | #if CRYPTOPP_MSC_VERSION |
|---|
| 413 | # pragma warning(push) |
|---|
| 414 | # pragma warning(disable: 4996) |
|---|
| 415 | # if (CRYPTOPP_MSC_VERSION >= 1400) |
|---|
| 416 | # pragma warning(disable: 6386) |
|---|
| 417 | # endif |
|---|
| 418 | #endif |
|---|
| 419 | memmove(dest, src, count); |
|---|
| 420 | #if CRYPTOPP_MSC_VERSION |
|---|
| 421 | # pragma warning(pop) |
|---|
| 422 | #endif |
|---|
| 423 | } |
|---|
| 424 | |
|---|
| 425 | #if __BORLANDC__ >= 0x620 |
|---|
| 426 | // C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths |
|---|
| 427 | # define memcpy_s CryptoPP::memcpy_s |
|---|
| 428 | # define memmove_s CryptoPP::memmove_s |
|---|
| 429 | #endif |
|---|
| 430 | |
|---|
| 431 | #endif // __STDC_WANT_SECURE_LIB__ |
|---|
| 432 | |
|---|
| 433 | //! \brief Swaps two variables which are arrays |
|---|
| 434 | //! \param a the first value |
|---|
| 435 | //! \param b the second value |
|---|
| 436 | //! \details C++03 does not provide support for <tt>std::swap(__m128i a, __m128i b)</tt> |
|---|
| 437 | //! because <tt>__m128i</tt> is an <tt>unsigned long long[2]</tt>. Most compilers |
|---|
| 438 | //! support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not. |
|---|
| 439 | //! \sa <A HREF="http://stackoverflow.com/q/38417413">How to swap two __m128i variables |
|---|
| 440 | //! in C++03 given its an opaque type and an array?</A> on Stack Overflow. |
|---|
| 441 | template <class T> |
|---|
| 442 | inline void vec_swap(T& a, T& b) |
|---|
| 443 | { |
|---|
| 444 | T t; |
|---|
| 445 | t=a, a=b, b=t; |
|---|
| 446 | } |
|---|
| 447 | |
|---|
| 448 | //! \brief Memory block initializer and eraser that attempts to survive optimizations |
|---|
| 449 | //! \param ptr pointer to the memory block being written |
|---|
| 450 | //! \param value the integer value to write for each byte |
|---|
| 451 | //! \param num the size of the source memory block, in bytes |
|---|
| 452 | //! \details Internally the function calls memset with the value value, and receives the |
|---|
| 453 | //! return value from memset as a <tt>volatile</tt> pointer. |
|---|
| 454 | inline void * memset_z(void *ptr, int value, size_t num) |
|---|
| 455 | { |
|---|
| 456 | // avoid extranous warning on GCC 4.3.2 Ubuntu 8.10 |
|---|
| 457 | #if CRYPTOPP_GCC_VERSION >= 30001 |
|---|
| 458 | if (__builtin_constant_p(num) && num==0) |
|---|
| 459 | return ptr; |
|---|
| 460 | #endif |
|---|
| 461 | volatile void* x = memset(ptr, value, num); |
|---|
| 462 | return const_cast<void*>(x); |
|---|
| 463 | } |
|---|
| 464 | |
|---|
| 465 | //! \brief Replacement function for std::min |
|---|
| 466 | //! \param a the first value |
|---|
| 467 | //! \param b the second value |
|---|
| 468 | //! \returns the minimum value based on a comparison of <tt>b \< a</tt> using <tt>operator\<</tt> |
|---|
| 469 | //! \details STDMIN was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
|---|
| 470 | template <class T> inline const T& STDMIN(const T& a, const T& b) |
|---|
| 471 | { |
|---|
| 472 | return b < a ? b : a; |
|---|
| 473 | } |
|---|
| 474 | |
|---|
| 475 | //! \brief Replacement function for std::max |
|---|
| 476 | //! \param a the first value |
|---|
| 477 | //! \param b the second value |
|---|
| 478 | //! \returns the minimum value based on a comparison of <tt>a \< b</tt> using <tt>operator\<</tt> |
|---|
| 479 | //! \details STDMAX was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
|---|
| 480 | template <class T> inline const T& STDMAX(const T& a, const T& b) |
|---|
| 481 | { |
|---|
| 482 | // can't use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
|---|
| 483 | return a < b ? b : a; |
|---|
| 484 | } |
|---|
| 485 | |
|---|
| 486 | #if CRYPTOPP_MSC_VERSION |
|---|
| 487 | # pragma warning(push) |
|---|
| 488 | # pragma warning(disable: 4389) |
|---|
| 489 | #endif |
|---|
| 490 | |
|---|
| 491 | #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE |
|---|
| 492 | # pragma GCC diagnostic push |
|---|
| 493 | # pragma GCC diagnostic ignored "-Wsign-compare" |
|---|
| 494 | # if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000) |
|---|
| 495 | # pragma GCC diagnostic ignored "-Wtautological-compare" |
|---|
| 496 | # elif (CRYPTOPP_GCC_VERSION >= 40300) |
|---|
| 497 | # pragma GCC diagnostic ignored "-Wtype-limits" |
|---|
| 498 | # endif |
|---|
| 499 | #endif |
|---|
| 500 | |
|---|
| 501 | //! \brief Safe comparison of values that could be neagtive and incorrectly promoted |
|---|
| 502 | //! \param a the first value |
|---|
| 503 | //! \param b the second value |
|---|
| 504 | //! \returns the minimum value based on a comparison a and b using <tt>operator<</tt>. |
|---|
| 505 | //! \details The comparison <tt>b \< a</tt> is performed and the value returned is a's type T1. |
|---|
| 506 | template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b) |
|---|
| 507 | { |
|---|
| 508 | CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0)); |
|---|
| 509 | if (sizeof(T1)<=sizeof(T2)) |
|---|
| 510 | return b < (T2)a ? (T1)b : a; |
|---|
| 511 | else |
|---|
| 512 | return (T1)b < a ? (T1)b : a; |
|---|
| 513 | } |
|---|
| 514 | |
|---|
| 515 | //! \brief Tests whether a conversion from -> to is safe to perform |
|---|
| 516 | //! \param from the first value |
|---|
| 517 | //! \param to the second value |
|---|
| 518 | //! \returns true if its safe to convert from into to, false otherwise. |
|---|
| 519 | template <class T1, class T2> |
|---|
| 520 | inline bool SafeConvert(T1 from, T2 &to) |
|---|
| 521 | { |
|---|
| 522 | to = (T2)from; |
|---|
| 523 | if (from != to || (from > 0) != (to > 0)) |
|---|
| 524 | return false; |
|---|
| 525 | return true; |
|---|
| 526 | } |
|---|
| 527 | |
|---|
| 528 | //! \brief Converts a value to a string |
|---|
| 529 | //! \param value the value to convert |
|---|
| 530 | //! \param base the base to use during the conversion |
|---|
| 531 | //! \returns the string representation of value in base. |
|---|
| 532 | template <class T> |
|---|
| 533 | std::string IntToString(T value, unsigned int base = 10) |
|---|
| 534 | { |
|---|
| 535 | // Hack... set the high bit for uppercase. |
|---|
| 536 | static const unsigned int HIGH_BIT = (1U << 31); |
|---|
| 537 | const char CH = !!(base & HIGH_BIT) ? 'A' : 'a'; |
|---|
| 538 | base &= ~HIGH_BIT; |
|---|
| 539 | |
|---|
| 540 | CRYPTOPP_ASSERT(base >= 2); |
|---|
| 541 | if (value == 0) |
|---|
| 542 | return "0"; |
|---|
| 543 | |
|---|
| 544 | bool negate = false; |
|---|
| 545 | if (value < 0) |
|---|
| 546 | { |
|---|
| 547 | negate = true; |
|---|
| 548 | value = 0-value; // VC .NET does not like -a |
|---|
| 549 | } |
|---|
| 550 | std::string result; |
|---|
| 551 | while (value > 0) |
|---|
| 552 | { |
|---|
| 553 | T digit = value % base; |
|---|
| 554 | result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result; |
|---|
| 555 | value /= base; |
|---|
| 556 | } |
|---|
| 557 | if (negate) |
|---|
| 558 | result = "-" + result; |
|---|
| 559 | return result; |
|---|
| 560 | } |
|---|
| 561 | |
|---|
| 562 | //! \brief Converts an unsigned value to a string |
|---|
| 563 | //! \param value the value to convert |
|---|
| 564 | //! \param base the base to use during the conversion |
|---|
| 565 | //! \returns the string representation of value in base. |
|---|
| 566 | //! \details this template function specialization was added to suppress |
|---|
| 567 | //! Coverity findings on IntToString() with unsigned types. |
|---|
| 568 | template <> CRYPTOPP_DLL |
|---|
| 569 | std::string IntToString<word64>(word64 value, unsigned int base); |
|---|
| 570 | |
|---|
| 571 | //! \brief Converts an Integer to a string |
|---|
| 572 | //! \param value the Integer to convert |
|---|
| 573 | //! \param base the base to use during the conversion |
|---|
| 574 | //! \returns the string representation of value in base. |
|---|
| 575 | //! \details This is a template specialization of IntToString(). Use it |
|---|
| 576 | //! like IntToString(): |
|---|
| 577 | //! <pre> |
|---|
| 578 | //! // Print integer in base 10 |
|---|
| 579 | //! Integer n... |
|---|
| 580 | //! std::string s = IntToString(n, 10); |
|---|
| 581 | //! </pre> |
|---|
| 582 | //! \details The string is presented with lowercase letters by default. A |
|---|
| 583 | //! hack is available to switch to uppercase letters without modifying |
|---|
| 584 | //! the function signature. |
|---|
| 585 | //! <pre> |
|---|
| 586 | //! // Print integer in base 16, uppercase letters |
|---|
| 587 | //! Integer n... |
|---|
| 588 | //! const unsigned int UPPER = (1 << 31); |
|---|
| 589 | //! std::string s = IntToString(n, (UPPER | 16));</pre> |
|---|
| 590 | template <> CRYPTOPP_DLL |
|---|
| 591 | std::string IntToString<Integer>(Integer value, unsigned int base); |
|---|
| 592 | |
|---|
| 593 | #if CRYPTOPP_MSC_VERSION |
|---|
| 594 | # pragma warning(pop) |
|---|
| 595 | #endif |
|---|
| 596 | |
|---|
| 597 | #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE |
|---|
| 598 | # pragma GCC diagnostic pop |
|---|
| 599 | #endif |
|---|
| 600 | |
|---|
| 601 | #define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue |
|---|
| 602 | |
|---|
| 603 | // this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack |
|---|
| 604 | #define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y))) |
|---|
| 605 | // these may be faster on other CPUs/compilers |
|---|
| 606 | // #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255) |
|---|
| 607 | // #define GETBYTE(x, y) (((byte *)&(x))[y]) |
|---|
| 608 | |
|---|
| 609 | #define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y))) |
|---|
| 610 | |
|---|
| 611 | //! \brief Returns the parity of a value |
|---|
| 612 | //! \param value the value to provide the parity |
|---|
| 613 | //! \returns 1 if the number 1-bits in the value is odd, 0 otherwise |
|---|
| 614 | template <class T> |
|---|
| 615 | unsigned int Parity(T value) |
|---|
| 616 | { |
|---|
| 617 | for (unsigned int i=8*sizeof(value)/2; i>0; i/=2) |
|---|
| 618 | value ^= value >> i; |
|---|
| 619 | return (unsigned int)value&1; |
|---|
| 620 | } |
|---|
| 621 | |
|---|
| 622 | //! \brief Returns the number of 8-bit bytes or octets required for a value |
|---|
| 623 | //! \param value the value to test |
|---|
| 624 | //! \returns the minimum number of 8-bit bytes or octets required to represent a value |
|---|
| 625 | template <class T> |
|---|
| 626 | unsigned int BytePrecision(const T &value) |
|---|
| 627 | { |
|---|
| 628 | if (!value) |
|---|
| 629 | return 0; |
|---|
| 630 | |
|---|
| 631 | unsigned int l=0, h=8*sizeof(value); |
|---|
| 632 | while (h-l > 8) |
|---|
| 633 | { |
|---|
| 634 | unsigned int t = (l+h)/2; |
|---|
| 635 | if (value >> t) |
|---|
| 636 | l = t; |
|---|
| 637 | else |
|---|
| 638 | h = t; |
|---|
| 639 | } |
|---|
| 640 | |
|---|
| 641 | return h/8; |
|---|
| 642 | } |
|---|
| 643 | |
|---|
| 644 | //! \brief Returns the number of bits required for a value |
|---|
| 645 | //! \param value the value to test |
|---|
| 646 | //! \returns the maximum number of bits required to represent a value. |
|---|
| 647 | template <class T> |
|---|
| 648 | unsigned int BitPrecision(const T &value) |
|---|
| 649 | { |
|---|
| 650 | if (!value) |
|---|
| 651 | return 0; |
|---|
| 652 | |
|---|
| 653 | unsigned int l=0, h=8*sizeof(value); |
|---|
| 654 | |
|---|
| 655 | while (h-l > 1) |
|---|
| 656 | { |
|---|
| 657 | unsigned int t = (l+h)/2; |
|---|
| 658 | if (value >> t) |
|---|
| 659 | l = t; |
|---|
| 660 | else |
|---|
| 661 | h = t; |
|---|
| 662 | } |
|---|
| 663 | |
|---|
| 664 | return h; |
|---|
| 665 | } |
|---|
| 666 | |
|---|
| 667 | //! Determines the number of trailing 0-bits in a value |
|---|
| 668 | //! \param v the 32-bit value to test |
|---|
| 669 | //! \returns the number of trailing 0-bits in v, starting at the least significant bit position |
|---|
| 670 | //! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least |
|---|
| 671 | //! significant bit position. The return value is undefined if there are no 1-bits set in the value v. |
|---|
| 672 | //! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position. |
|---|
| 673 | inline unsigned int TrailingZeros(word32 v) |
|---|
| 674 | { |
|---|
| 675 | // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors |
|---|
| 676 | // We don't enable for Microsoft because it requires a runtime check. |
|---|
| 677 | // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx |
|---|
| 678 | CRYPTOPP_ASSERT(v != 0); |
|---|
| 679 | #if defined(__GNUC__) && defined(__BMI__) |
|---|
| 680 | return (unsigned int)_tzcnt_u32(v); |
|---|
| 681 | #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400) |
|---|
| 682 | return (unsigned int)__builtin_ctz(v); |
|---|
| 683 | #elif defined(_MSC_VER) && (_MSC_VER >= 1400) |
|---|
| 684 | unsigned long result; |
|---|
| 685 | _BitScanForward(&result, v); |
|---|
| 686 | return (unsigned int)result; |
|---|
| 687 | #else |
|---|
| 688 | // from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup |
|---|
| 689 | static const int MultiplyDeBruijnBitPosition[32] = |
|---|
| 690 | { |
|---|
| 691 | 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, |
|---|
| 692 | 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 |
|---|
| 693 | }; |
|---|
| 694 | return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27]; |
|---|
| 695 | #endif |
|---|
| 696 | } |
|---|
| 697 | |
|---|
| 698 | //! Determines the number of trailing 0-bits in a value |
|---|
| 699 | //! \param v the 64-bit value to test |
|---|
| 700 | //! \returns the number of trailing 0-bits in v, starting at the least significant bit position |
|---|
| 701 | //! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least |
|---|
| 702 | //! significant bit position. The return value is undefined if there are no 1-bits set in the value v. |
|---|
| 703 | //! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position. |
|---|
| 704 | inline unsigned int TrailingZeros(word64 v) |
|---|
| 705 | { |
|---|
| 706 | // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors |
|---|
| 707 | // We don't enable for Microsoft because it requires a runtime check. |
|---|
| 708 | // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx |
|---|
| 709 | CRYPTOPP_ASSERT(v != 0); |
|---|
| 710 | #if defined(__GNUC__) && defined(__BMI__) && defined(__x86_64__) |
|---|
| 711 | return (unsigned int)_tzcnt_u64(v); |
|---|
| 712 | #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400) |
|---|
| 713 | return (unsigned int)__builtin_ctzll(v); |
|---|
| 714 | #elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64)) |
|---|
| 715 | unsigned long result; |
|---|
| 716 | _BitScanForward64(&result, v); |
|---|
| 717 | return (unsigned int)result; |
|---|
| 718 | #else |
|---|
| 719 | return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32)); |
|---|
| 720 | #endif |
|---|
| 721 | } |
|---|
| 722 | |
|---|
| 723 | //! \brief Truncates the value to the specified number of bits. |
|---|
| 724 | //! \param value the value to truncate or mask |
|---|
| 725 | //! \param bits the number of bits to truncate or mask |
|---|
| 726 | //! \returns the value truncated to the specified number of bits, starting at the least |
|---|
| 727 | //! significant bit position |
|---|
| 728 | //! \details This function masks the low-order bits of value and returns the result. The |
|---|
| 729 | //! mask is created with <tt>(1 << bits) - 1</tt>. |
|---|
| 730 | template <class T> |
|---|
| 731 | inline T Crop(T value, size_t bits) |
|---|
| 732 | { |
|---|
| 733 | if (bits < 8*sizeof(value)) |
|---|
| 734 | return T(value & ((T(1) << bits) - 1)); |
|---|
| 735 | else |
|---|
| 736 | return value; |
|---|
| 737 | } |
|---|
| 738 | |
|---|
| 739 | //! \brief Returns the number of 8-bit bytes or octets required for the specified number of bits |
|---|
| 740 | //! \param bitCount the number of bits |
|---|
| 741 | //! \returns the minimum number of 8-bit bytes or octets required by bitCount |
|---|
| 742 | //! \details BitsToBytes is effectively a ceiling function based on 8-bit bytes. |
|---|
| 743 | inline size_t BitsToBytes(size_t bitCount) |
|---|
| 744 | { |
|---|
| 745 | return ((bitCount+7)/(8)); |
|---|
| 746 | } |
|---|
| 747 | |
|---|
| 748 | //! \brief Returns the number of words required for the specified number of bytes |
|---|
| 749 | //! \param byteCount the number of bytes |
|---|
| 750 | //! \returns the minimum number of words required by byteCount |
|---|
| 751 | //! \details BytesToWords is effectively a ceiling function based on <tt>WORD_SIZE</tt>. |
|---|
| 752 | //! <tt>WORD_SIZE</tt> is defined in config.h |
|---|
| 753 | inline size_t BytesToWords(size_t byteCount) |
|---|
| 754 | { |
|---|
| 755 | return ((byteCount+WORD_SIZE-1)/WORD_SIZE); |
|---|
| 756 | } |
|---|
| 757 | |
|---|
| 758 | //! \brief Returns the number of words required for the specified number of bits |
|---|
| 759 | //! \param bitCount the number of bits |
|---|
| 760 | //! \returns the minimum number of words required by bitCount |
|---|
| 761 | //! \details BitsToWords is effectively a ceiling function based on <tt>WORD_BITS</tt>. |
|---|
| 762 | //! <tt>WORD_BITS</tt> is defined in config.h |
|---|
| 763 | inline size_t BitsToWords(size_t bitCount) |
|---|
| 764 | { |
|---|
| 765 | return ((bitCount+WORD_BITS-1)/(WORD_BITS)); |
|---|
| 766 | } |
|---|
| 767 | |
|---|
| 768 | //! \brief Returns the number of double words required for the specified number of bits |
|---|
| 769 | //! \param bitCount the number of bits |
|---|
| 770 | //! \returns the minimum number of double words required by bitCount |
|---|
| 771 | //! \details BitsToDwords is effectively a ceiling function based on <tt>2*WORD_BITS</tt>. |
|---|
| 772 | //! <tt>WORD_BITS</tt> is defined in config.h |
|---|
| 773 | inline size_t BitsToDwords(size_t bitCount) |
|---|
| 774 | { |
|---|
| 775 | return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS)); |
|---|
| 776 | } |
|---|
| 777 | |
|---|
| 778 | //! Performs an XOR of a buffer with a mask |
|---|
| 779 | //! \param buf the buffer to XOR with the mask |
|---|
| 780 | //! \param mask the mask to XOR with the buffer |
|---|
| 781 | //! \param count the size of the buffers, in bytes |
|---|
| 782 | //! \details The function effectively visits each element in the buffers and performs |
|---|
| 783 | //! <tt>buf[i] ^= mask[i]</tt>. buf and mask must be of equal size. |
|---|
| 784 | CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count); |
|---|
| 785 | |
|---|
| 786 | //! Performs an XOR of an input buffer with a mask and stores the result in an output buffer |
|---|
| 787 | //! \param output the destination buffer |
|---|
| 788 | //! \param input the source buffer to XOR with the mask |
|---|
| 789 | //! \param mask the mask buffer to XOR with the input buffer |
|---|
| 790 | //! \param count the size of the buffers, in bytes |
|---|
| 791 | //! \details The function effectively visits each element in the buffers and performs |
|---|
| 792 | //! <tt>output[i] = input[i] ^ mask[i]</tt>. output, input and mask must be of equal size. |
|---|
| 793 | CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count); |
|---|
| 794 | |
|---|
| 795 | //! \brief Performs a near constant-time comparison of two equally sized buffers |
|---|
| 796 | //! \param buf1 the first buffer |
|---|
| 797 | //! \param buf2 the second buffer |
|---|
| 798 | //! \param count the size of the buffers, in bytes |
|---|
| 799 | //! \details The function effectively performs an XOR of the elements in two equally sized buffers |
|---|
| 800 | //! and retruns a result based on the XOR operation. The function is near constant-time because |
|---|
| 801 | //! CPU micro-code timings could affect the "constant-ness". Calling code is responsible for |
|---|
| 802 | //! mitigating timing attacks if the buffers are \a not equally sized. |
|---|
| 803 | //! \sa ModPowerOf2 |
|---|
| 804 | CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count); |
|---|
| 805 | |
|---|
| 806 | //! \brief Tests whether a value is a power of 2 |
|---|
| 807 | //! \param value the value to test |
|---|
| 808 | //! \returns true if value is a power of 2, false otherwise |
|---|
| 809 | //! \details The function creates a mask of <tt>value - 1</tt> and returns the result of |
|---|
| 810 | //! an AND operation compared to 0. If value is 0 or less than 0, then the function returns false. |
|---|
| 811 | template <class T> |
|---|
| 812 | inline bool IsPowerOf2(const T &value) |
|---|
| 813 | { |
|---|
| 814 | return value > 0 && (value & (value-1)) == 0; |
|---|
| 815 | } |
|---|
| 816 | |
|---|
| 817 | #if defined(__GNUC__) && defined(__BMI__) |
|---|
| 818 | template <> |
|---|
| 819 | inline bool IsPowerOf2<word32>(const word32 &value) |
|---|
| 820 | { |
|---|
| 821 | return value > 0 && _blsr_u32(value) == 0; |
|---|
| 822 | } |
|---|
| 823 | |
|---|
| 824 | # if defined(__x86_64__) |
|---|
| 825 | template <> |
|---|
| 826 | inline bool IsPowerOf2<word64>(const word64 &value) |
|---|
| 827 | { |
|---|
| 828 | return value > 0 && _blsr_u64(value) == 0; |
|---|
| 829 | } |
|---|
| 830 | # endif |
|---|
| 831 | #endif |
|---|
| 832 | |
|---|
| 833 | //! \brief Performs a saturating subtract clamped at 0 |
|---|
| 834 | //! \param a the minuend |
|---|
| 835 | //! \param b the subtrahend |
|---|
| 836 | //! \returns the difference produced by the saturating subtract |
|---|
| 837 | //! \details Saturating arithmetic restricts results to a fixed range. Results that are less than 0 are clamped at 0. |
|---|
| 838 | //! \details Use of saturating arithmetic in places can be advantageous because it can |
|---|
| 839 | //! avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>). |
|---|
| 840 | template <class T1, class T2> |
|---|
| 841 | inline T1 SaturatingSubtract(const T1 &a, const T2 &b) |
|---|
| 842 | { |
|---|
| 843 | // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html |
|---|
| 844 | return T1((a > b) ? (a - b) : 0); |
|---|
| 845 | } |
|---|
| 846 | |
|---|
| 847 | //! \brief Performs a saturating subtract clamped at 1 |
|---|
| 848 | //! \param a the minuend |
|---|
| 849 | //! \param b the subtrahend |
|---|
| 850 | //! \returns the difference produced by the saturating subtract |
|---|
| 851 | //! \details Saturating arithmetic restricts results to a fixed range. Results that are less than |
|---|
| 852 | //! 1 are clamped at 1. |
|---|
| 853 | //! \details Use of saturating arithmetic in places can be advantageous because it can |
|---|
| 854 | //! avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>). |
|---|
| 855 | template <class T1, class T2> |
|---|
| 856 | inline T1 SaturatingSubtract1(const T1 &a, const T2 &b) |
|---|
| 857 | { |
|---|
| 858 | // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html |
|---|
| 859 | return T1((a > b) ? (a - b) : 1); |
|---|
| 860 | } |
|---|
| 861 | |
|---|
| 862 | //! \brief Reduces a value to a power of 2 |
|---|
| 863 | //! \param a the first value |
|---|
| 864 | //! \param b the second value |
|---|
| 865 | //! \returns ModPowerOf2() returns <tt>a & (b-1)</tt>. <tt>b</tt> must be a power of 2. |
|---|
| 866 | //! Use IsPowerOf2() to determine if <tt>b</tt> is a suitable candidate. |
|---|
| 867 | //! \sa IsPowerOf2 |
|---|
| 868 | template <class T1, class T2> |
|---|
| 869 | inline T2 ModPowerOf2(const T1 &a, const T2 &b) |
|---|
| 870 | { |
|---|
| 871 | CRYPTOPP_ASSERT(IsPowerOf2(b)); |
|---|
| 872 | // Coverity finding CID 170383 Overflowed return value (INTEGER_OVERFLOW) |
|---|
| 873 | return T2(a) & SaturatingSubtract(b,1U); |
|---|
| 874 | } |
|---|
| 875 | |
|---|
| 876 | //! \brief Rounds a value down to a multiple of a second value |
|---|
| 877 | //! \param n the value to reduce |
|---|
| 878 | //! \param m the value to reduce \n to to a multiple |
|---|
| 879 | //! \returns the possibly unmodified value \n |
|---|
| 880 | //! \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns |
|---|
| 881 | //! the value <tt>n - n\%m</tt>. If n is a multiple of m, then the original value is returned. |
|---|
| 882 | template <class T1, class T2> |
|---|
| 883 | inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m) |
|---|
| 884 | { |
|---|
| 885 | if (IsPowerOf2(m)) |
|---|
| 886 | return n - ModPowerOf2(n, m); |
|---|
| 887 | else |
|---|
| 888 | return n - n%m; |
|---|
| 889 | } |
|---|
| 890 | |
|---|
| 891 | //! \brief Rounds a value up to a multiple of a second value |
|---|
| 892 | //! \param n the value to reduce |
|---|
| 893 | //! \param m the value to reduce \n to to a multiple |
|---|
| 894 | //! \returns the possibly unmodified value \n |
|---|
| 895 | //! \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function |
|---|
| 896 | //! returns the value <tt>n + n\%m</tt>. If n is a multiple of m, then the original value is |
|---|
| 897 | //! returned. If the value n would overflow, then an InvalidArgument exception is thrown. |
|---|
| 898 | template <class T1, class T2> |
|---|
| 899 | inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m) |
|---|
| 900 | { |
|---|
| 901 | if (n > (SIZE_MAX/sizeof(T1))-m-1) |
|---|
| 902 | throw InvalidArgument("RoundUpToMultipleOf: integer overflow"); |
|---|
| 903 | return RoundDownToMultipleOf(T1(n+m-1), m); |
|---|
| 904 | } |
|---|
| 905 | |
|---|
| 906 | //! \brief Returns the minimum alignment requirements of a type |
|---|
| 907 | //! \param dummy an unused Visual C++ 6.0 workaround |
|---|
| 908 | //! \returns the minimum alignment requirements of a type, in bytes |
|---|
| 909 | //! \details Internally the function calls C++11's <tt>alignof</tt> if available. If not available, |
|---|
| 910 | //! then the function uses compiler specific extensions such as <tt>__alignof</tt> and |
|---|
| 911 | //! <tt>_alignof_</tt>. If an extension is not available, then the function uses |
|---|
| 912 | //! <tt>__BIGGEST_ALIGNMENT__</tt> if <tt>__BIGGEST_ALIGNMENT__</tt> is smaller than <tt>sizeof(T)</tt>. |
|---|
| 913 | //! <tt>sizeof(T)</tt> is used if all others are not available. |
|---|
| 914 | //! In <em>all</em> cases, if <tt>CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS</tt> is defined, then the |
|---|
| 915 | //! function returns 1. |
|---|
| 916 | template <class T> |
|---|
| 917 | inline unsigned int GetAlignmentOf(T *dummy=NULL) // VC60 workaround |
|---|
| 918 | { |
|---|
| 919 | // GCC 4.6 (circa 2008) and above aggressively uses vectorization. |
|---|
| 920 | #if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS) |
|---|
| 921 | if (sizeof(T) < 16) |
|---|
| 922 | return 1; |
|---|
| 923 | #endif |
|---|
| 924 | CRYPTOPP_UNUSED(dummy); |
|---|
| 925 | #if defined(CRYPTOPP_CXX11_ALIGNOF) |
|---|
| 926 | return alignof(T); |
|---|
| 927 | #elif (_MSC_VER >= 1300) |
|---|
| 928 | return __alignof(T); |
|---|
| 929 | #elif defined(__GNUC__) |
|---|
| 930 | return __alignof__(T); |
|---|
| 931 | #elif CRYPTOPP_BOOL_SLOW_WORD64 |
|---|
| 932 | return UnsignedMin(4U, sizeof(T)); |
|---|
| 933 | #else |
|---|
| 934 | # if __BIGGEST_ALIGNMENT__ |
|---|
| 935 | if (__BIGGEST_ALIGNMENT__ < sizeof(T)) |
|---|
| 936 | return __BIGGEST_ALIGNMENT__; |
|---|
| 937 | else |
|---|
| 938 | # endif |
|---|
| 939 | return sizeof(T); |
|---|
| 940 | #endif |
|---|
| 941 | } |
|---|
| 942 | |
|---|
| 943 | //! \brief Determines whether ptr is aligned to a minimum value |
|---|
| 944 | //! \param ptr the pointer being checked for alignment |
|---|
| 945 | //! \param alignment the alignment value to test the pointer against |
|---|
| 946 | //! \returns true if ptr is aligned on at least align boundary |
|---|
| 947 | //! \details Internally the function tests whether alignment is 1. If so, the function returns true. |
|---|
| 948 | //! If not, then the function effectively performs a modular reduction and returns true if the residue is 0 |
|---|
| 949 | inline bool IsAlignedOn(const void *ptr, unsigned int alignment) |
|---|
| 950 | { |
|---|
| 951 | return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)ptr, alignment) == 0 : (size_t)ptr % alignment == 0); |
|---|
| 952 | } |
|---|
| 953 | |
|---|
| 954 | //! \brief Determines whether ptr is minimally aligned |
|---|
| 955 | //! \param ptr the pointer to check for alignment |
|---|
| 956 | //! \param dummy an unused Visual C++ 6.0 workaround |
|---|
| 957 | //! \returns true if ptr follows native byte ordering, false otherwise |
|---|
| 958 | //! \details Internally the function calls IsAlignedOn with a second parameter of GetAlignmentOf<T> |
|---|
| 959 | template <class T> |
|---|
| 960 | inline bool IsAligned(const void *ptr, T *dummy=NULL) // VC60 workaround |
|---|
| 961 | { |
|---|
| 962 | CRYPTOPP_UNUSED(dummy); |
|---|
| 963 | return IsAlignedOn(ptr, GetAlignmentOf<T>()); |
|---|
| 964 | } |
|---|
| 965 | |
|---|
| 966 | #if defined(IS_LITTLE_ENDIAN) |
|---|
| 967 | typedef LittleEndian NativeByteOrder; |
|---|
| 968 | #elif defined(IS_BIG_ENDIAN) |
|---|
| 969 | typedef BigEndian NativeByteOrder; |
|---|
| 970 | #else |
|---|
| 971 | # error "Unable to determine endian-ness" |
|---|
| 972 | #endif |
|---|
| 973 | |
|---|
| 974 | //! \brief Returns NativeByteOrder as an enumerated ByteOrder value |
|---|
| 975 | //! \returns LittleEndian if the native byte order is little-endian, and BigEndian if the |
|---|
| 976 | //! native byte order is big-endian |
|---|
| 977 | //! \details NativeByteOrder is a typedef depending on the platform. If IS_LITTLE_ENDIAN is |
|---|
| 978 | //! set in config.h, then GetNativeByteOrder returns LittleEndian. If |
|---|
| 979 | //! IS_BIG_ENDIAN is set, then GetNativeByteOrder returns BigEndian. |
|---|
| 980 | //! \note There are other byte orders besides little- and big-endian, and they include bi-endian |
|---|
| 981 | //! and PDP-endian. If a system is neither little-endian nor big-endian, then a compile time error occurs. |
|---|
| 982 | inline ByteOrder GetNativeByteOrder() |
|---|
| 983 | { |
|---|
| 984 | return NativeByteOrder::ToEnum(); |
|---|
| 985 | } |
|---|
| 986 | |
|---|
| 987 | //! \brief Determines whether order follows native byte ordering |
|---|
| 988 | //! \param order the ordering being tested against native byte ordering |
|---|
| 989 | //! \returns true if order follows native byte ordering, false otherwise |
|---|
| 990 | inline bool NativeByteOrderIs(ByteOrder order) |
|---|
| 991 | { |
|---|
| 992 | return order == GetNativeByteOrder(); |
|---|
| 993 | } |
|---|
| 994 | |
|---|
| 995 | //! \brief Returns the direction the cipher is being operated |
|---|
| 996 | //! \param obj the cipher object being queried |
|---|
| 997 | //! \returns \p ENCRYPTION if the cipher obj is being operated in its forward direction, |
|---|
| 998 | //! \p DECRYPTION otherwise |
|---|
| 999 | //! \details A cipher can be operated in a "forward" direction (encryption) or a "reverse" |
|---|
| 1000 | //! direction (decryption). The operations do not have to be symmetric, meaning a second |
|---|
| 1001 | //! application of the transformation does not necessariy return the original message. |
|---|
| 1002 | //! That is, <tt>E(D(m))</tt> may not equal <tt>E(E(m))</tt>; and <tt>D(E(m))</tt> may not |
|---|
| 1003 | //! equal <tt>D(D(m))</tt>. |
|---|
| 1004 | template <class T> |
|---|
| 1005 | inline CipherDir GetCipherDir(const T &obj) |
|---|
| 1006 | { |
|---|
| 1007 | return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION; |
|---|
| 1008 | } |
|---|
| 1009 | |
|---|
| 1010 | //! \brief Attempts to reclaim unused memory |
|---|
| 1011 | //! \throws bad_alloc |
|---|
| 1012 | //! \details In the normal course of running a program, a request for memory normally succeeds. If a |
|---|
| 1013 | //! call to AlignedAllocate or UnalignedAllocate fails, then CallNewHandler is called in |
|---|
| 1014 | //! an effort to recover. Internally, CallNewHandler calls set_new_handler(NULL) in an effort |
|---|
| 1015 | //! to free memory. There is no guarantee CallNewHandler will be able to procure more memory so |
|---|
| 1016 | //! an allocation succeeds. If the call to set_new_handler fails, then CallNewHandler throws |
|---|
| 1017 | //! a bad_alloc exception. |
|---|
| 1018 | CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler(); |
|---|
| 1019 | |
|---|
| 1020 | //! \brief Performs an addition with carry on a block of bytes |
|---|
| 1021 | //! \param inout the byte block |
|---|
| 1022 | //! \param size the size of the block, in bytes |
|---|
| 1023 | //! \details Performs an addition with carry by adding 1 on a block of bytes starting at the least |
|---|
| 1024 | //! significant byte. Once carry is 0, the function terminates and returns to the caller. |
|---|
| 1025 | //! \note The function is not constant time because it stops processing when the carry is 0. |
|---|
| 1026 | inline void IncrementCounterByOne(byte *inout, unsigned int size) |
|---|
| 1027 | { |
|---|
| 1028 | CRYPTOPP_ASSERT(inout != NULL); CRYPTOPP_ASSERT(size < INT_MAX); |
|---|
| 1029 | for (int i=int(size-1), carry=1; i>=0 && carry; i--) |
|---|
| 1030 | carry = !++inout[i]; |
|---|
| 1031 | } |
|---|
| 1032 | |
|---|
| 1033 | //! \brief Performs an addition with carry on a block of bytes |
|---|
| 1034 | //! \param output the destination block of bytes |
|---|
| 1035 | //! \param input the source block of bytes |
|---|
| 1036 | //! \param size the size of the block |
|---|
| 1037 | //! \details Performs an addition with carry on a block of bytes starting at the least significant |
|---|
| 1038 | //! byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy. |
|---|
| 1039 | //! \details The function is \a close to near-constant time because it operates on all the bytes in the blocks. |
|---|
| 1040 | inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size) |
|---|
| 1041 | { |
|---|
| 1042 | CRYPTOPP_ASSERT(output != NULL); CRYPTOPP_ASSERT(input != NULL); CRYPTOPP_ASSERT(size < INT_MAX); |
|---|
| 1043 | |
|---|
| 1044 | int i, carry; |
|---|
| 1045 | for (i=int(size-1), carry=1; i>=0 && carry; i--) |
|---|
| 1046 | carry = ((output[i] = input[i]+1) == 0); |
|---|
| 1047 | memcpy_s(output, size, input, size_t(i)+1); |
|---|
| 1048 | } |
|---|
| 1049 | |
|---|
| 1050 | //! \brief Performs a branchless swap of values a and b if condition c is true |
|---|
| 1051 | //! \param c the condition to perform the swap |
|---|
| 1052 | //! \param a the first value |
|---|
| 1053 | //! \param b the second value |
|---|
| 1054 | template <class T> |
|---|
| 1055 | inline void ConditionalSwap(bool c, T &a, T &b) |
|---|
| 1056 | { |
|---|
| 1057 | T t = c * (a ^ b); |
|---|
| 1058 | a ^= t; |
|---|
| 1059 | b ^= t; |
|---|
| 1060 | } |
|---|
| 1061 | |
|---|
| 1062 | //! \brief Performs a branchless swap of pointers a and b if condition c is true |
|---|
| 1063 | //! \param c the condition to perform the swap |
|---|
| 1064 | //! \param a the first pointer |
|---|
| 1065 | //! \param b the second pointer |
|---|
| 1066 | template <class T> |
|---|
| 1067 | inline void ConditionalSwapPointers(bool c, T &a, T &b) |
|---|
| 1068 | { |
|---|
| 1069 | ptrdiff_t t = size_t(c) * (a - b); |
|---|
| 1070 | a -= t; |
|---|
| 1071 | b += t; |
|---|
| 1072 | } |
|---|
| 1073 | |
|---|
| 1074 | // see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html |
|---|
| 1075 | // and https://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data |
|---|
| 1076 | |
|---|
| 1077 | //! \brief Sets each element of an array to 0 |
|---|
| 1078 | //! \param buf an array of elements |
|---|
| 1079 | //! \param n the number of elements in the array |
|---|
| 1080 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal |
|---|
| 1081 | template <class T> |
|---|
| 1082 | void SecureWipeBuffer(T *buf, size_t n) |
|---|
| 1083 | { |
|---|
| 1084 | // GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction |
|---|
| 1085 | volatile T *p = buf+n; |
|---|
| 1086 | while (n--) |
|---|
| 1087 | *((volatile T*)(--p)) = 0; |
|---|
| 1088 | } |
|---|
| 1089 | |
|---|
| 1090 | #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) |
|---|
| 1091 | |
|---|
| 1092 | //! \brief Sets each byte of an array to 0 |
|---|
| 1093 | //! \param buf an array of bytes |
|---|
| 1094 | //! \param n the number of elements in the array |
|---|
| 1095 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
|---|
| 1096 | template<> inline void SecureWipeBuffer(byte *buf, size_t n) |
|---|
| 1097 | { |
|---|
| 1098 | volatile byte *p = buf; |
|---|
| 1099 | #ifdef __GNUC__ |
|---|
| 1100 | asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
|---|
| 1101 | #else |
|---|
| 1102 | __stosb((byte *)(size_t)p, 0, n); |
|---|
| 1103 | #endif |
|---|
| 1104 | } |
|---|
| 1105 | |
|---|
| 1106 | //! \brief Sets each 16-bit element of an array to 0 |
|---|
| 1107 | //! \param buf an array of 16-bit words |
|---|
| 1108 | //! \param n the number of elements in the array |
|---|
| 1109 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
|---|
| 1110 | template<> inline void SecureWipeBuffer(word16 *buf, size_t n) |
|---|
| 1111 | { |
|---|
| 1112 | volatile word16 *p = buf; |
|---|
| 1113 | #ifdef __GNUC__ |
|---|
| 1114 | asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
|---|
| 1115 | #else |
|---|
| 1116 | __stosw((word16 *)(size_t)p, 0, n); |
|---|
| 1117 | #endif |
|---|
| 1118 | } |
|---|
| 1119 | |
|---|
| 1120 | //! \brief Sets each 32-bit element of an array to 0 |
|---|
| 1121 | //! \param buf an array of 32-bit words |
|---|
| 1122 | //! \param n the number of elements in the array |
|---|
| 1123 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
|---|
| 1124 | template<> inline void SecureWipeBuffer(word32 *buf, size_t n) |
|---|
| 1125 | { |
|---|
| 1126 | volatile word32 *p = buf; |
|---|
| 1127 | #ifdef __GNUC__ |
|---|
| 1128 | asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
|---|
| 1129 | #else |
|---|
| 1130 | __stosd((unsigned long *)(size_t)p, 0, n); |
|---|
| 1131 | #endif |
|---|
| 1132 | } |
|---|
| 1133 | |
|---|
| 1134 | //! \brief Sets each 64-bit element of an array to 0 |
|---|
| 1135 | //! \param buf an array of 64-bit words |
|---|
| 1136 | //! \param n the number of elements in the array |
|---|
| 1137 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
|---|
| 1138 | template<> inline void SecureWipeBuffer(word64 *buf, size_t n) |
|---|
| 1139 | { |
|---|
| 1140 | #if CRYPTOPP_BOOL_X64 |
|---|
| 1141 | volatile word64 *p = buf; |
|---|
| 1142 | #ifdef __GNUC__ |
|---|
| 1143 | asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
|---|
| 1144 | #else |
|---|
| 1145 | __stosq((word64 *)(size_t)p, 0, n); |
|---|
| 1146 | #endif |
|---|
| 1147 | #else |
|---|
| 1148 | SecureWipeBuffer((word32 *)buf, 2*n); |
|---|
| 1149 | #endif |
|---|
| 1150 | } |
|---|
| 1151 | |
|---|
| 1152 | #endif // #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) |
|---|
| 1153 | |
|---|
| 1154 | #if (_MSC_VER >= 1700) && defined(_M_ARM) |
|---|
| 1155 | template<> inline void SecureWipeBuffer(byte *buf, size_t n) |
|---|
| 1156 | { |
|---|
| 1157 | char *p = reinterpret_cast<char*>(buf+n); |
|---|
| 1158 | while (n--) |
|---|
| 1159 | __iso_volatile_store8(--p, 0); |
|---|
| 1160 | } |
|---|
| 1161 | |
|---|
| 1162 | template<> inline void SecureWipeBuffer(word16 *buf, size_t n) |
|---|
| 1163 | { |
|---|
| 1164 | short *p = reinterpret_cast<short*>(buf+n); |
|---|
| 1165 | while (n--) |
|---|
| 1166 | __iso_volatile_store16(--p, 0); |
|---|
| 1167 | } |
|---|
| 1168 | |
|---|
| 1169 | template<> inline void SecureWipeBuffer(word32 *buf, size_t n) |
|---|
| 1170 | { |
|---|
| 1171 | int *p = reinterpret_cast<int*>(buf+n); |
|---|
| 1172 | while (n--) |
|---|
| 1173 | __iso_volatile_store32(--p, 0); |
|---|
| 1174 | } |
|---|
| 1175 | |
|---|
| 1176 | template<> inline void SecureWipeBuffer(word64 *buf, size_t n) |
|---|
| 1177 | { |
|---|
| 1178 | __int64 *p = reinterpret_cast<__int64*>(buf+n); |
|---|
| 1179 | while (n--) |
|---|
| 1180 | __iso_volatile_store64(--p, 0); |
|---|
| 1181 | } |
|---|
| 1182 | #endif |
|---|
| 1183 | |
|---|
| 1184 | //! \brief Sets each element of an array to 0 |
|---|
| 1185 | //! \param buf an array of elements |
|---|
| 1186 | //! \param n the number of elements in the array |
|---|
| 1187 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
|---|
| 1188 | template <class T> |
|---|
| 1189 | inline void SecureWipeArray(T *buf, size_t n) |
|---|
| 1190 | { |
|---|
| 1191 | if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0) |
|---|
| 1192 | SecureWipeBuffer((word64 *)(void *)buf, n * (sizeof(T)/8)); |
|---|
| 1193 | else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0) |
|---|
| 1194 | SecureWipeBuffer((word32 *)(void *)buf, n * (sizeof(T)/4)); |
|---|
| 1195 | else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0) |
|---|
| 1196 | SecureWipeBuffer((word16 *)(void *)buf, n * (sizeof(T)/2)); |
|---|
| 1197 | else |
|---|
| 1198 | SecureWipeBuffer((byte *)(void *)buf, n * sizeof(T)); |
|---|
| 1199 | } |
|---|
| 1200 | |
|---|
| 1201 | //! \brief Converts a wide character C-string to a multibyte string |
|---|
| 1202 | //! \param str C-string consisting of wide characters |
|---|
| 1203 | //! \param throwOnError flag indication the function should throw on error |
|---|
| 1204 | //! \returns str converted to a multibyte string or an empty string. |
|---|
| 1205 | //! \details StringNarrow converts a wide string to a narrow string using C++ std::wcstombs() under |
|---|
| 1206 | //! the executing thread's locale. A locale must be set before using this function, and it can be |
|---|
| 1207 | //! set with std::setlocale() if needed. Upon success, the converted string is returned. |
|---|
| 1208 | //! \details Upon failure with throwOnError as false, the function returns an empty string. If |
|---|
| 1209 | //! throwOnError as true, the function throws an InvalidArgument() exception. |
|---|
| 1210 | //! \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8 |
|---|
| 1211 | //! (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available, |
|---|
| 1212 | //! then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception. |
|---|
| 1213 | #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 |
|---|
| 1214 | std::string StringNarrow(const wchar_t *str, bool throwOnError = true); |
|---|
| 1215 | #else |
|---|
| 1216 | static std::string StringNarrow(const wchar_t *str, bool throwOnError = true) |
|---|
| 1217 | { |
|---|
| 1218 | CRYPTOPP_ASSERT(str); |
|---|
| 1219 | std::string result; |
|---|
| 1220 | |
|---|
| 1221 | // Safer functions on Windows for C&A, https://github.com/weidai11/cryptopp/issues/55 |
|---|
| 1222 | #if (CRYPTOPP_MSC_VERSION >= 1400) |
|---|
| 1223 | size_t len=0, size=0; |
|---|
| 1224 | errno_t err = 0; |
|---|
| 1225 | |
|---|
| 1226 | //const wchar_t* ptr = str; |
|---|
| 1227 | //while (*ptr++) len++; |
|---|
| 1228 | len = wcslen(str)+1; |
|---|
| 1229 | |
|---|
| 1230 | err = wcstombs_s(&size, NULL, 0, str, len*sizeof(wchar_t)); |
|---|
| 1231 | CRYPTOPP_ASSERT(err == 0); |
|---|
| 1232 | if (err != 0) {goto CONVERSION_ERROR;} |
|---|
| 1233 | |
|---|
| 1234 | result.resize(size); |
|---|
| 1235 | err = wcstombs_s(&size, &result[0], size, str, len*sizeof(wchar_t)); |
|---|
| 1236 | CRYPTOPP_ASSERT(err == 0); |
|---|
| 1237 | |
|---|
| 1238 | if (err != 0) |
|---|
| 1239 | { |
|---|
| 1240 | CONVERSION_ERROR: |
|---|
| 1241 | if (throwOnError) |
|---|
| 1242 | throw InvalidArgument("StringNarrow: wcstombs_s() call failed with error " + IntToString(err)); |
|---|
| 1243 | else |
|---|
| 1244 | return std::string(); |
|---|
| 1245 | } |
|---|
| 1246 | |
|---|
| 1247 | // The safe routine's size includes the NULL. |
|---|
| 1248 | if (!result.empty() && result[size - 1] == '\0') |
|---|
| 1249 | result.erase(size - 1); |
|---|
| 1250 | #else |
|---|
| 1251 | size_t size = wcstombs(NULL, str, 0); |
|---|
| 1252 | CRYPTOPP_ASSERT(size != (size_t)-1); |
|---|
| 1253 | if (size == (size_t)-1) {goto CONVERSION_ERROR;} |
|---|
| 1254 | |
|---|
| 1255 | result.resize(size); |
|---|
| 1256 | size = wcstombs(&result[0], str, size); |
|---|
| 1257 | CRYPTOPP_ASSERT(size != (size_t)-1); |
|---|
| 1258 | |
|---|
| 1259 | if (size == (size_t)-1) |
|---|
| 1260 | { |
|---|
| 1261 | CONVERSION_ERROR: |
|---|
| 1262 | if (throwOnError) |
|---|
| 1263 | throw InvalidArgument("StringNarrow: wcstombs() call failed"); |
|---|
| 1264 | else |
|---|
| 1265 | return std::string(); |
|---|
| 1266 | } |
|---|
| 1267 | #endif |
|---|
| 1268 | |
|---|
| 1269 | return result; |
|---|
| 1270 | } |
|---|
| 1271 | #endif // StringNarrow and CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 |
|---|
| 1272 | |
|---|
| 1273 | #ifdef CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 1274 | |
|---|
| 1275 | //! \brief Allocates a buffer on 16-byte boundary |
|---|
| 1276 | //! \param size the size of the buffer |
|---|
| 1277 | //! \details AlignedAllocate is primarily used when the data will be proccessed by MMX, SSE2 and NEON |
|---|
| 1278 | //! instructions. The assembly language routines rely on the alignment. If the alignment is not |
|---|
| 1279 | //! respected, then a SIGBUS could be generated on Unix and Linux, and an |
|---|
| 1280 | //! EXCEPTION_DATATYPE_MISALIGNMENT could be generated on Windows. |
|---|
| 1281 | //! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is |
|---|
| 1282 | //! defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h |
|---|
| 1283 | CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size); |
|---|
| 1284 | |
|---|
| 1285 | //! \brief Frees a buffer allocated with AlignedAllocate |
|---|
| 1286 | //! \param ptr the buffer to free |
|---|
| 1287 | //! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is |
|---|
| 1288 | //! defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h |
|---|
| 1289 | CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr); |
|---|
| 1290 | |
|---|
| 1291 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
|---|
| 1292 | |
|---|
| 1293 | #if CRYPTOPP_BOOL_ALIGN16 |
|---|
| 1294 | CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size); |
|---|
| 1295 | CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr); |
|---|
| 1296 | #endif // CRYPTOPP_BOOL_ALIGN16 |
|---|
| 1297 | |
|---|
| 1298 | //! \brief Allocates a buffer |
|---|
| 1299 | //! \param size the size of the buffer |
|---|
| 1300 | CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size); |
|---|
| 1301 | |
|---|
| 1302 | //! \brief Frees a buffer allocated with UnalignedAllocate |
|---|
| 1303 | //! \param ptr the buffer to free |
|---|
| 1304 | CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *ptr); |
|---|
| 1305 | |
|---|
| 1306 | // ************** rotate functions *************** |
|---|
| 1307 | |
|---|
| 1308 | //! \brief Performs a left rotate |
|---|
| 1309 | //! \tparam T the word type |
|---|
| 1310 | //! \param x the value to rotate |
|---|
| 1311 | //! \param y the number of bit positions to rotate the value |
|---|
| 1312 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
|---|
| 1313 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1314 | //! Use rotlMod if the rotate amount y is outside the range. |
|---|
| 1315 | //! \note rotlFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
|---|
| 1316 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
|---|
| 1317 | //! counterparts. |
|---|
| 1318 | template <class T> inline T rotlFixed(T x, unsigned int y) |
|---|
| 1319 | { |
|---|
| 1320 | // Portable rotate that reduces to single instruction... |
|---|
| 1321 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157, |
|---|
| 1322 | // https://software.intel.com/en-us/forums/topic/580884 |
|---|
| 1323 | // and https://llvm.org/bugs/show_bug.cgi?id=24226 |
|---|
| 1324 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
|---|
| 1325 | static const unsigned int MASK = THIS_SIZE-1; |
|---|
| 1326 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
|---|
| 1327 | return T((x<<y)|(x>>(-y&MASK))); |
|---|
| 1328 | } |
|---|
| 1329 | |
|---|
| 1330 | //! \brief Performs a right rotate |
|---|
| 1331 | //! \tparam T the word type |
|---|
| 1332 | //! \param x the value to rotate |
|---|
| 1333 | //! \param y the number of bit positions to rotate the value |
|---|
| 1334 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
|---|
| 1335 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1336 | //! Use rotrMod if the rotate amount y is outside the range. |
|---|
| 1337 | //! \note rotrFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
|---|
| 1338 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
|---|
| 1339 | //! counterparts. |
|---|
| 1340 | template <class T> inline T rotrFixed(T x, unsigned int y) |
|---|
| 1341 | { |
|---|
| 1342 | // Portable rotate that reduces to single instruction... |
|---|
| 1343 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157, |
|---|
| 1344 | // https://software.intel.com/en-us/forums/topic/580884 |
|---|
| 1345 | // and https://llvm.org/bugs/show_bug.cgi?id=24226 |
|---|
| 1346 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
|---|
| 1347 | static const unsigned int MASK = THIS_SIZE-1; |
|---|
| 1348 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
|---|
| 1349 | return T((x >> y)|(x<<(-y&MASK))); |
|---|
| 1350 | } |
|---|
| 1351 | |
|---|
| 1352 | //! \brief Performs a left rotate |
|---|
| 1353 | //! \tparam T the word type |
|---|
| 1354 | //! \param x the value to rotate |
|---|
| 1355 | //! \param y the number of bit positions to rotate the value |
|---|
| 1356 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
|---|
| 1357 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1358 | //! Use rotlMod if the rotate amount y is outside the range. |
|---|
| 1359 | //! \note rotlVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
|---|
| 1360 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
|---|
| 1361 | //! counterparts. |
|---|
| 1362 | template <class T> inline T rotlVariable(T x, unsigned int y) |
|---|
| 1363 | { |
|---|
| 1364 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
|---|
| 1365 | static const unsigned int MASK = THIS_SIZE-1; |
|---|
| 1366 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
|---|
| 1367 | return T((x<<y)|(x>>(-y&MASK))); |
|---|
| 1368 | } |
|---|
| 1369 | |
|---|
| 1370 | //! \brief Performs a right rotate |
|---|
| 1371 | //! \tparam T the word type |
|---|
| 1372 | //! \param x the value to rotate |
|---|
| 1373 | //! \param y the number of bit positions to rotate the value |
|---|
| 1374 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
|---|
| 1375 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1376 | //! Use rotrMod if the rotate amount y is outside the range. |
|---|
| 1377 | //! \note rotrVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
|---|
| 1378 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
|---|
| 1379 | //! counterparts. |
|---|
| 1380 | template <class T> inline T rotrVariable(T x, unsigned int y) |
|---|
| 1381 | { |
|---|
| 1382 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
|---|
| 1383 | static const unsigned int MASK = THIS_SIZE-1; |
|---|
| 1384 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
|---|
| 1385 | return T((x>>y)|(x<<(-y&MASK))); |
|---|
| 1386 | } |
|---|
| 1387 | |
|---|
| 1388 | //! \brief Performs a left rotate |
|---|
| 1389 | //! \tparam T the word type |
|---|
| 1390 | //! \param x the value to rotate |
|---|
| 1391 | //! \param y the number of bit positions to rotate the value |
|---|
| 1392 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
|---|
| 1393 | //! \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1394 | //! \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>. |
|---|
| 1395 | template <class T> inline T rotlMod(T x, unsigned int y) |
|---|
| 1396 | { |
|---|
| 1397 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
|---|
| 1398 | static const unsigned int MASK = THIS_SIZE-1; |
|---|
| 1399 | return T((x<<(y&MASK))|(x>>(-y&MASK))); |
|---|
| 1400 | } |
|---|
| 1401 | |
|---|
| 1402 | //! \brief Performs a right rotate |
|---|
| 1403 | //! \tparam T the word type |
|---|
| 1404 | //! \param x the value to rotate |
|---|
| 1405 | //! \param y the number of bit positions to rotate the value |
|---|
| 1406 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
|---|
| 1407 | //! \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1408 | //! \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>. |
|---|
| 1409 | template <class T> inline T rotrMod(T x, unsigned int y) |
|---|
| 1410 | { |
|---|
| 1411 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
|---|
| 1412 | static const unsigned int MASK = THIS_SIZE-1; |
|---|
| 1413 | return T((x>>(y&MASK))|(x<<(-y&MASK))); |
|---|
| 1414 | } |
|---|
| 1415 | |
|---|
| 1416 | #ifdef _MSC_VER |
|---|
| 1417 | |
|---|
| 1418 | //! \brief Performs a left rotate |
|---|
| 1419 | //! \tparam T the word type |
|---|
| 1420 | //! \param x the 32-bit value to rotate |
|---|
| 1421 | //! \param y the number of bit positions to rotate the value |
|---|
| 1422 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
|---|
| 1423 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
|---|
| 1424 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1425 | //! \note rotlFixed will assert in Debug builds if is outside the allowed range. |
|---|
| 1426 | template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) |
|---|
| 1427 | { |
|---|
| 1428 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
|---|
| 1429 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1430 | return y ? _lrotl(x, static_cast<byte>(y)) : x; |
|---|
| 1431 | } |
|---|
| 1432 | |
|---|
| 1433 | //! \brief Performs a right rotate |
|---|
| 1434 | //! \tparam T the word type |
|---|
| 1435 | //! \param x the 32-bit value to rotate |
|---|
| 1436 | //! \param y the number of bit positions to rotate the value |
|---|
| 1437 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
|---|
| 1438 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
|---|
| 1439 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1440 | //! \note rotrFixed will assert in Debug builds if is outside the allowed range. |
|---|
| 1441 | template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) |
|---|
| 1442 | { |
|---|
| 1443 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
|---|
| 1444 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1445 | return y ? _lrotr(x, static_cast<byte>(y)) : x; |
|---|
| 1446 | } |
|---|
| 1447 | |
|---|
| 1448 | //! \brief Performs a left rotate |
|---|
| 1449 | //! \tparam T the word type |
|---|
| 1450 | //! \param x the 32-bit value to rotate |
|---|
| 1451 | //! \param y the number of bit positions to rotate the value |
|---|
| 1452 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
|---|
| 1453 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
|---|
| 1454 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1455 | //! \note rotlVariable will assert in Debug builds if is outside the allowed range. |
|---|
| 1456 | template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) |
|---|
| 1457 | { |
|---|
| 1458 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1459 | return _lrotl(x, static_cast<byte>(y)); |
|---|
| 1460 | } |
|---|
| 1461 | |
|---|
| 1462 | //! \brief Performs a right rotate |
|---|
| 1463 | //! \tparam T the word type |
|---|
| 1464 | //! \param x the 32-bit value to rotate |
|---|
| 1465 | //! \param y the number of bit positions to rotate the value |
|---|
| 1466 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
|---|
| 1467 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
|---|
| 1468 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1469 | //! \note rotrVariable will assert in Debug builds if is outside the allowed range. |
|---|
| 1470 | template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) |
|---|
| 1471 | { |
|---|
| 1472 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1473 | return _lrotr(x, static_cast<byte>(y)); |
|---|
| 1474 | } |
|---|
| 1475 | |
|---|
| 1476 | //! \brief Performs a left rotate |
|---|
| 1477 | //! \tparam T the word type |
|---|
| 1478 | //! \param x the 32-bit value to rotate |
|---|
| 1479 | //! \param y the number of bit positions to rotate the value |
|---|
| 1480 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
|---|
| 1481 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
|---|
| 1482 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1483 | template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) |
|---|
| 1484 | { |
|---|
| 1485 | y %= 8*sizeof(x); |
|---|
| 1486 | return _lrotl(x, static_cast<byte>(y)); |
|---|
| 1487 | } |
|---|
| 1488 | |
|---|
| 1489 | //! \brief Performs a right rotate |
|---|
| 1490 | //! \tparam T the word type |
|---|
| 1491 | //! \param x the 32-bit value to rotate |
|---|
| 1492 | //! \param y the number of bit positions to rotate the value |
|---|
| 1493 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
|---|
| 1494 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
|---|
| 1495 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1496 | template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) |
|---|
| 1497 | { |
|---|
| 1498 | y %= 8*sizeof(x); |
|---|
| 1499 | return _lrotr(x, static_cast<byte>(y)); |
|---|
| 1500 | } |
|---|
| 1501 | |
|---|
| 1502 | #endif // #ifdef _MSC_VER |
|---|
| 1503 | |
|---|
| 1504 | #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
|---|
| 1505 | // Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions |
|---|
| 1506 | |
|---|
| 1507 | //! \brief Performs a left rotate |
|---|
| 1508 | //! \tparam T the word type |
|---|
| 1509 | //! \param x the 64-bit value to rotate |
|---|
| 1510 | //! \param y the number of bit positions to rotate the value |
|---|
| 1511 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
|---|
| 1512 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
|---|
| 1513 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1514 | //! \note rotrFixed will assert in Debug builds if is outside the allowed range. |
|---|
| 1515 | template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y) |
|---|
| 1516 | { |
|---|
| 1517 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
|---|
| 1518 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1519 | return y ? _rotl64(x, static_cast<byte>(y)) : x; |
|---|
| 1520 | } |
|---|
| 1521 | |
|---|
| 1522 | //! \brief Performs a right rotate |
|---|
| 1523 | //! \tparam T the word type |
|---|
| 1524 | //! \param x the 64-bit value to rotate |
|---|
| 1525 | //! \param y the number of bit positions to rotate the value |
|---|
| 1526 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
|---|
| 1527 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
|---|
| 1528 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1529 | //! \note rotrFixed will assert in Debug builds if is outside the allowed range. |
|---|
| 1530 | template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y) |
|---|
| 1531 | { |
|---|
| 1532 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
|---|
| 1533 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1534 | return y ? _rotr64(x, static_cast<byte>(y)) : x; |
|---|
| 1535 | } |
|---|
| 1536 | |
|---|
| 1537 | //! \brief Performs a left rotate |
|---|
| 1538 | //! \tparam T the word type |
|---|
| 1539 | //! \param x the 64-bit value to rotate |
|---|
| 1540 | //! \param y the number of bit positions to rotate the value |
|---|
| 1541 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
|---|
| 1542 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
|---|
| 1543 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1544 | //! \note rotlVariable will assert in Debug builds if is outside the allowed range. |
|---|
| 1545 | template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y) |
|---|
| 1546 | { |
|---|
| 1547 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1548 | return _rotl64(x, static_cast<byte>(y)); |
|---|
| 1549 | } |
|---|
| 1550 | |
|---|
| 1551 | //! \brief Performs a right rotate |
|---|
| 1552 | //! \tparam T the word type |
|---|
| 1553 | //! \param x the 64-bit value to rotate |
|---|
| 1554 | //! \param y the number of bit positions to rotate the value |
|---|
| 1555 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
|---|
| 1556 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
|---|
| 1557 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1558 | //! \note rotrVariable will assert in Debug builds if is outside the allowed range. |
|---|
| 1559 | template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y) |
|---|
| 1560 | { |
|---|
| 1561 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1562 | return y ? _rotr64(x, static_cast<byte>(y)) : x; |
|---|
| 1563 | } |
|---|
| 1564 | |
|---|
| 1565 | //! \brief Performs a left rotate |
|---|
| 1566 | //! \tparam T the word type |
|---|
| 1567 | //! \param x the 64-bit value to rotate |
|---|
| 1568 | //! \param y the number of bit positions to rotate the value |
|---|
| 1569 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
|---|
| 1570 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
|---|
| 1571 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1572 | template<> inline word64 rotlMod<word64>(word64 x, unsigned int y) |
|---|
| 1573 | { |
|---|
| 1574 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1575 | return y ? _rotl64(x, static_cast<byte>(y)) : x; |
|---|
| 1576 | } |
|---|
| 1577 | |
|---|
| 1578 | //! \brief Performs a right rotate |
|---|
| 1579 | //! \tparam T the word type |
|---|
| 1580 | //! \param x the 64-bit value to rotate |
|---|
| 1581 | //! \param y the number of bit positions to rotate the value |
|---|
| 1582 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
|---|
| 1583 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
|---|
| 1584 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
|---|
| 1585 | template<> inline word64 rotrMod<word64>(word64 x, unsigned int y) |
|---|
| 1586 | { |
|---|
| 1587 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
|---|
| 1588 | return y ? _rotr64(x, static_cast<byte>(y)) : x; |
|---|
| 1589 | } |
|---|
| 1590 | |
|---|
| 1591 | #endif // #if _MSC_VER >= 1310 |
|---|
| 1592 | |
|---|
| 1593 | #if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) |
|---|
| 1594 | // Intel C++ Compiler 10.0 gives undefined externals with these |
|---|
| 1595 | |
|---|
| 1596 | template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y) |
|---|
| 1597 | { |
|---|
| 1598 | // Intrinsic, not bound to C/C++ language rules. |
|---|
| 1599 | return _rotl16(x, static_cast<byte>(y)); |
|---|
| 1600 | } |
|---|
| 1601 | |
|---|
| 1602 | template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y) |
|---|
| 1603 | { |
|---|
| 1604 | // Intrinsic, not bound to C/C++ language rules. |
|---|
| 1605 | return _rotr16(x, static_cast<byte>(y)); |
|---|
| 1606 | } |
|---|
| 1607 | |
|---|
| 1608 | template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y) |
|---|
| 1609 | { |
|---|
| 1610 | return _rotl16(x, static_cast<byte>(y)); |
|---|
| 1611 | } |
|---|
| 1612 | |
|---|
| 1613 | template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y) |
|---|
| 1614 | { |
|---|
| 1615 | return _rotr16(x, static_cast<byte>(y)); |
|---|
| 1616 | } |
|---|
| 1617 | |
|---|
| 1618 | template<> inline word16 rotlMod<word16>(word16 x, unsigned int y) |
|---|
| 1619 | { |
|---|
| 1620 | return _rotl16(x, static_cast<byte>(y)); |
|---|
| 1621 | } |
|---|
| 1622 | |
|---|
| 1623 | template<> inline word16 rotrMod<word16>(word16 x, unsigned int y) |
|---|
| 1624 | { |
|---|
| 1625 | return _rotr16(x, static_cast<byte>(y)); |
|---|
| 1626 | } |
|---|
| 1627 | |
|---|
| 1628 | template<> inline byte rotlFixed<byte>(byte x, unsigned int y) |
|---|
| 1629 | { |
|---|
| 1630 | // Intrinsic, not bound to C/C++ language rules. |
|---|
| 1631 | return _rotl8(x, static_cast<byte>(y)); |
|---|
| 1632 | } |
|---|
| 1633 | |
|---|
| 1634 | template<> inline byte rotrFixed<byte>(byte x, unsigned int y) |
|---|
| 1635 | { |
|---|
| 1636 | // Intrinsic, not bound to C/C++ language rules. |
|---|
| 1637 | return _rotr8(x, static_cast<byte>(y)); |
|---|
| 1638 | } |
|---|
| 1639 | |
|---|
| 1640 | template<> inline byte rotlVariable<byte>(byte x, unsigned int y) |
|---|
| 1641 | { |
|---|
| 1642 | return _rotl8(x, static_cast<byte>(y)); |
|---|
| 1643 | } |
|---|
| 1644 | |
|---|
| 1645 | template<> inline byte rotrVariable<byte>(byte x, unsigned int y) |
|---|
| 1646 | { |
|---|
| 1647 | return _rotr8(x, static_cast<byte>(y)); |
|---|
| 1648 | } |
|---|
| 1649 | |
|---|
| 1650 | template<> inline byte rotlMod<byte>(byte x, unsigned int y) |
|---|
| 1651 | { |
|---|
| 1652 | return _rotl8(x, static_cast<byte>(y)); |
|---|
| 1653 | } |
|---|
| 1654 | |
|---|
| 1655 | template<> inline byte rotrMod<byte>(byte x, unsigned int y) |
|---|
| 1656 | { |
|---|
| 1657 | return _rotr8(x, static_cast<byte>(y)); |
|---|
| 1658 | } |
|---|
| 1659 | |
|---|
| 1660 | #endif // #if _MSC_VER >= 1400 |
|---|
| 1661 | |
|---|
| 1662 | #if (defined(__MWERKS__) && TARGET_CPU_PPC) |
|---|
| 1663 | |
|---|
| 1664 | template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) |
|---|
| 1665 | { |
|---|
| 1666 | CRYPTOPP_ASSERT(y < 32); |
|---|
| 1667 | return y ? __rlwinm(x,y,0,31) : x; |
|---|
| 1668 | } |
|---|
| 1669 | |
|---|
| 1670 | template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) |
|---|
| 1671 | { |
|---|
| 1672 | CRYPTOPP_ASSERT(y < 32); |
|---|
| 1673 | return y ? __rlwinm(x,32-y,0,31) : x; |
|---|
| 1674 | } |
|---|
| 1675 | |
|---|
| 1676 | template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) |
|---|
| 1677 | { |
|---|
| 1678 | CRYPTOPP_ASSERT(y < 32); |
|---|
| 1679 | return (__rlwnm(x,y,0,31)); |
|---|
| 1680 | } |
|---|
| 1681 | |
|---|
| 1682 | template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) |
|---|
| 1683 | { |
|---|
| 1684 | CRYPTOPP_ASSERT(y < 32); |
|---|
| 1685 | return (__rlwnm(x,32-y,0,31)); |
|---|
| 1686 | } |
|---|
| 1687 | |
|---|
| 1688 | template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) |
|---|
| 1689 | { |
|---|
| 1690 | return (__rlwnm(x,y,0,31)); |
|---|
| 1691 | } |
|---|
| 1692 | |
|---|
| 1693 | template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) |
|---|
| 1694 | { |
|---|
| 1695 | return (__rlwnm(x,32-y,0,31)); |
|---|
| 1696 | } |
|---|
| 1697 | |
|---|
| 1698 | #endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC) |
|---|
| 1699 | |
|---|
| 1700 | // ************** endian reversal *************** |
|---|
| 1701 | |
|---|
| 1702 | //! \brief Gets a byte from a value |
|---|
| 1703 | //! \param order the ByteOrder of the value |
|---|
| 1704 | //! \param value the value to retrieve the byte |
|---|
| 1705 | //! \param index the location of the byte to retrieve |
|---|
| 1706 | template <class T> |
|---|
| 1707 | inline unsigned int GetByte(ByteOrder order, T value, unsigned int index) |
|---|
| 1708 | { |
|---|
| 1709 | if (order == LITTLE_ENDIAN_ORDER) |
|---|
| 1710 | return GETBYTE(value, index); |
|---|
| 1711 | else |
|---|
| 1712 | return GETBYTE(value, sizeof(T)-index-1); |
|---|
| 1713 | } |
|---|
| 1714 | |
|---|
| 1715 | //! \brief Reverses bytes in a 8-bit value |
|---|
| 1716 | //! \param value the 8-bit value to reverse |
|---|
| 1717 | //! \note ByteReverse returns the value passed to it since there is nothing to reverse |
|---|
| 1718 | inline byte ByteReverse(byte value) |
|---|
| 1719 | { |
|---|
| 1720 | return value; |
|---|
| 1721 | } |
|---|
| 1722 | |
|---|
| 1723 | //! \brief Reverses bytes in a 16-bit value |
|---|
| 1724 | //! \brief Performs an endian reversal |
|---|
| 1725 | //! \param value the 16-bit value to reverse |
|---|
| 1726 | //! \details ByteReverse calls bswap if available. Otherwise the function performs a 8-bit rotate on the word16 |
|---|
| 1727 | inline word16 ByteReverse(word16 value) |
|---|
| 1728 | { |
|---|
| 1729 | #ifdef CRYPTOPP_BYTESWAP_AVAILABLE |
|---|
| 1730 | return bswap_16(value); |
|---|
| 1731 | #elif defined(_MSC_VER) && _MSC_VER >= 1300 |
|---|
| 1732 | return _byteswap_ushort(value); |
|---|
| 1733 | #else |
|---|
| 1734 | return rotlFixed(value, 8U); |
|---|
| 1735 | #endif |
|---|
| 1736 | } |
|---|
| 1737 | |
|---|
| 1738 | //! \brief Reverses bytes in a 32-bit value |
|---|
| 1739 | //! \brief Performs an endian reversal |
|---|
| 1740 | //! \param value the 32-bit value to reverse |
|---|
| 1741 | //! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word32 |
|---|
| 1742 | inline word32 ByteReverse(word32 value) |
|---|
| 1743 | { |
|---|
| 1744 | #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) |
|---|
| 1745 | __asm__ ("bswap %0" : "=r" (value) : "0" (value)); |
|---|
| 1746 | return value; |
|---|
| 1747 | #elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) |
|---|
| 1748 | return bswap_32(value); |
|---|
| 1749 | #elif defined(__MWERKS__) && TARGET_CPU_PPC |
|---|
| 1750 | return (word32)__lwbrx(&value,0); |
|---|
| 1751 | #elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL)) |
|---|
| 1752 | return _byteswap_ulong(value); |
|---|
| 1753 | #elif CRYPTOPP_FAST_ROTATE(32) |
|---|
| 1754 | // 5 instructions with rotate instruction, 9 without |
|---|
| 1755 | return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff); |
|---|
| 1756 | #else |
|---|
| 1757 | // 6 instructions with rotate instruction, 8 without |
|---|
| 1758 | value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); |
|---|
| 1759 | return rotlFixed(value, 16U); |
|---|
| 1760 | #endif |
|---|
| 1761 | } |
|---|
| 1762 | |
|---|
| 1763 | //! \brief Reverses bytes in a 64-bit value |
|---|
| 1764 | //! \brief Performs an endian reversal |
|---|
| 1765 | //! \param value the 64-bit value to reverse |
|---|
| 1766 | //! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word64 |
|---|
| 1767 | inline word64 ByteReverse(word64 value) |
|---|
| 1768 | { |
|---|
| 1769 | #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__) |
|---|
| 1770 | __asm__ ("bswap %0" : "=r" (value) : "0" (value)); |
|---|
| 1771 | return value; |
|---|
| 1772 | #elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) |
|---|
| 1773 | return bswap_64(value); |
|---|
| 1774 | #elif defined(_MSC_VER) && _MSC_VER >= 1300 |
|---|
| 1775 | return _byteswap_uint64(value); |
|---|
| 1776 | #elif CRYPTOPP_BOOL_SLOW_WORD64 |
|---|
| 1777 | return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32)); |
|---|
| 1778 | #else |
|---|
| 1779 | value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8); |
|---|
| 1780 | value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16); |
|---|
| 1781 | return rotlFixed(value, 32U); |
|---|
| 1782 | #endif |
|---|
| 1783 | } |
|---|
| 1784 | |
|---|
| 1785 | //! \brief Reverses bits in a 8-bit value |
|---|
| 1786 | //! \param value the 8-bit value to reverse |
|---|
| 1787 | //! \details BitReverse performs a combination of shifts on the byte |
|---|
| 1788 | inline byte BitReverse(byte value) |
|---|
| 1789 | { |
|---|
| 1790 | value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1); |
|---|
| 1791 | value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2); |
|---|
| 1792 | return rotlFixed(value, 4U); |
|---|
| 1793 | } |
|---|
| 1794 | |
|---|
| 1795 | //! \brief Reverses bits in a 16-bit value |
|---|
| 1796 | //! \param value the 16-bit value to reverse |
|---|
| 1797 | //! \details BitReverse performs a combination of shifts on the word16 |
|---|
| 1798 | inline word16 BitReverse(word16 value) |
|---|
| 1799 | { |
|---|
| 1800 | value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1); |
|---|
| 1801 | value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2); |
|---|
| 1802 | value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4); |
|---|
| 1803 | return ByteReverse(value); |
|---|
| 1804 | } |
|---|
| 1805 | |
|---|
| 1806 | //! \brief Reverses bits in a 32-bit value |
|---|
| 1807 | //! \param value the 32-bit value to reverse |
|---|
| 1808 | //! \details BitReverse performs a combination of shifts on the word32 |
|---|
| 1809 | inline word32 BitReverse(word32 value) |
|---|
| 1810 | { |
|---|
| 1811 | value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1); |
|---|
| 1812 | value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2); |
|---|
| 1813 | value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4); |
|---|
| 1814 | return ByteReverse(value); |
|---|
| 1815 | } |
|---|
| 1816 | |
|---|
| 1817 | //! \brief Reverses bits in a 64-bit value |
|---|
| 1818 | //! \param value the 64-bit value to reverse |
|---|
| 1819 | //! \details BitReverse performs a combination of shifts on the word64 |
|---|
| 1820 | inline word64 BitReverse(word64 value) |
|---|
| 1821 | { |
|---|
| 1822 | #if CRYPTOPP_BOOL_SLOW_WORD64 |
|---|
| 1823 | return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32)); |
|---|
| 1824 | #else |
|---|
| 1825 | value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1); |
|---|
| 1826 | value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2); |
|---|
| 1827 | value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4); |
|---|
| 1828 | return ByteReverse(value); |
|---|
| 1829 | #endif |
|---|
| 1830 | } |
|---|
| 1831 | |
|---|
| 1832 | //! \brief Reverses bits in a value |
|---|
| 1833 | //! \param value the value to reverse |
|---|
| 1834 | //! \details The template overload of BitReverse operates on signed and unsigned values. |
|---|
| 1835 | //! Internally the size of T is checked, and then value is cast to a byte, |
|---|
| 1836 | //! word16, word32 or word64. After the cast, the appropriate BitReverse |
|---|
| 1837 | //! overload is called. |
|---|
| 1838 | template <class T> |
|---|
| 1839 | inline T BitReverse(T value) |
|---|
| 1840 | { |
|---|
| 1841 | if (sizeof(T) == 1) |
|---|
| 1842 | return (T)BitReverse((byte)value); |
|---|
| 1843 | else if (sizeof(T) == 2) |
|---|
| 1844 | return (T)BitReverse((word16)value); |
|---|
| 1845 | else if (sizeof(T) == 4) |
|---|
| 1846 | return (T)BitReverse((word32)value); |
|---|
| 1847 | else |
|---|
| 1848 | { |
|---|
| 1849 | CRYPTOPP_ASSERT(sizeof(T) == 8); |
|---|
| 1850 | return (T)BitReverse((word64)value); |
|---|
| 1851 | } |
|---|
| 1852 | } |
|---|
| 1853 | |
|---|
| 1854 | //! \brief Reverses bytes in a value depending upon endianess |
|---|
| 1855 | //! \tparam T the class or type |
|---|
| 1856 | //! \param order the ByteOrder the data is represented |
|---|
| 1857 | //! \param value the value to conditionally reverse |
|---|
| 1858 | //! \details Internally, the ConditionalByteReverse calls NativeByteOrderIs. |
|---|
| 1859 | //! If order matches native byte order, then the original value is returned. |
|---|
| 1860 | //! If not, then ByteReverse is called on the value before returning to the caller. |
|---|
| 1861 | template <class T> |
|---|
| 1862 | inline T ConditionalByteReverse(ByteOrder order, T value) |
|---|
| 1863 | { |
|---|
| 1864 | return NativeByteOrderIs(order) ? value : ByteReverse(value); |
|---|
| 1865 | } |
|---|
| 1866 | |
|---|
| 1867 | //! \brief Reverses bytes in an element from an array of elements |
|---|
| 1868 | //! \tparam T the class or type |
|---|
| 1869 | //! \param out the output array of elements |
|---|
| 1870 | //! \param in the input array of elements |
|---|
| 1871 | //! \param byteCount the total number of bytes in the array |
|---|
| 1872 | //! \details Internally, ByteReverse visits each element in the in array |
|---|
| 1873 | //! calls ByteReverse on it, and writes the result to out. |
|---|
| 1874 | //! \details ByteReverse does not process tail byes, or bytes that are |
|---|
| 1875 | //! \a not part of a full element. If T is int (and int is 4 bytes), then |
|---|
| 1876 | //! <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are |
|---|
| 1877 | //! reversed. |
|---|
| 1878 | //! \details The follwoing program should help illustrate the behavior. |
|---|
| 1879 | //! <pre>vector<word32> v1, v2; |
|---|
| 1880 | //! |
|---|
| 1881 | //! v1.push_back(1); |
|---|
| 1882 | //! v1.push_back(2); |
|---|
| 1883 | //! v1.push_back(3); |
|---|
| 1884 | //! v1.push_back(4); |
|---|
| 1885 | //! |
|---|
| 1886 | //! v2.resize(v1.size()); |
|---|
| 1887 | //! ByteReverse<word32>(&v2[0], &v1[0], 16); |
|---|
| 1888 | //! |
|---|
| 1889 | //! cout << "V1: "; |
|---|
| 1890 | //! for(unsigned int i = 0; i < v1.size(); i++) |
|---|
| 1891 | //! cout << std::hex << v1[i] << " "; |
|---|
| 1892 | //! cout << endl; |
|---|
| 1893 | //! |
|---|
| 1894 | //! cout << "V2: "; |
|---|
| 1895 | //! for(unsigned int i = 0; i < v2.size(); i++) |
|---|
| 1896 | //! cout << std::hex << v2[i] << " "; |
|---|
| 1897 | //! cout << endl;</pre> |
|---|
| 1898 | //! The program above results in the follwoing output. |
|---|
| 1899 | //! <pre>V1: 00000001 00000002 00000003 00000004 |
|---|
| 1900 | //! V2: 01000000 02000000 03000000 04000000</pre> |
|---|
| 1901 | //! \sa ConditionalByteReverse |
|---|
| 1902 | template <class T> |
|---|
| 1903 | void ByteReverse(T *out, const T *in, size_t byteCount) |
|---|
| 1904 | { |
|---|
| 1905 | CRYPTOPP_ASSERT(byteCount % sizeof(T) == 0); |
|---|
| 1906 | size_t count = byteCount/sizeof(T); |
|---|
| 1907 | for (size_t i=0; i<count; i++) |
|---|
| 1908 | out[i] = ByteReverse(in[i]); |
|---|
| 1909 | } |
|---|
| 1910 | |
|---|
| 1911 | //! \brief Conditionally reverses bytes in an element from an array of elements |
|---|
| 1912 | //! \tparam T the class or type |
|---|
| 1913 | //! \param order the ByteOrder the data is represented |
|---|
| 1914 | //! \param out the output array of elements |
|---|
| 1915 | //! \param in the input array of elements |
|---|
| 1916 | //! \param byteCount the byte count of the arrays |
|---|
| 1917 | //! \details Internally, ByteReverse visits each element in the in array |
|---|
| 1918 | //! calls ByteReverse on it depending on the desired endianess, and writes the result to out. |
|---|
| 1919 | //! \details ByteReverse does not process tail byes, or bytes that are |
|---|
| 1920 | //! \a not part of a full element. If T is int (and int is 4 bytes), then |
|---|
| 1921 | //! <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are |
|---|
| 1922 | //! reversed. |
|---|
| 1923 | //! \sa ByteReverse |
|---|
| 1924 | template <class T> |
|---|
| 1925 | inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount) |
|---|
| 1926 | { |
|---|
| 1927 | if (!NativeByteOrderIs(order)) |
|---|
| 1928 | ByteReverse(out, in, byteCount); |
|---|
| 1929 | else if (in != out) |
|---|
| 1930 | memcpy_s(out, byteCount, in, byteCount); |
|---|
| 1931 | } |
|---|
| 1932 | |
|---|
| 1933 | template <class T> |
|---|
| 1934 | inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen) |
|---|
| 1935 | { |
|---|
| 1936 | const size_t U = sizeof(T); |
|---|
| 1937 | CRYPTOPP_ASSERT(inlen <= outlen*U); |
|---|
| 1938 | memcpy_s(out, outlen*U, in, inlen); |
|---|
| 1939 | memset_z((byte *)out+inlen, 0, outlen*U-inlen); |
|---|
| 1940 | ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U)); |
|---|
| 1941 | } |
|---|
| 1942 | |
|---|
| 1943 | #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|---|
| 1944 | inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *) |
|---|
| 1945 | { |
|---|
| 1946 | CRYPTOPP_UNUSED(order); |
|---|
| 1947 | return block[0]; |
|---|
| 1948 | } |
|---|
| 1949 | |
|---|
| 1950 | inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *) |
|---|
| 1951 | { |
|---|
| 1952 | return (order == BIG_ENDIAN_ORDER) |
|---|
| 1953 | ? block[1] | (block[0] << 8) |
|---|
| 1954 | : block[0] | (block[1] << 8); |
|---|
| 1955 | } |
|---|
| 1956 | |
|---|
| 1957 | inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *) |
|---|
| 1958 | { |
|---|
| 1959 | return (order == BIG_ENDIAN_ORDER) |
|---|
| 1960 | ? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24) |
|---|
| 1961 | : word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24); |
|---|
| 1962 | } |
|---|
| 1963 | |
|---|
| 1964 | inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *) |
|---|
| 1965 | { |
|---|
| 1966 | return (order == BIG_ENDIAN_ORDER) |
|---|
| 1967 | ? |
|---|
| 1968 | (word64(block[7]) | |
|---|
| 1969 | (word64(block[6]) << 8) | |
|---|
| 1970 | (word64(block[5]) << 16) | |
|---|
| 1971 | (word64(block[4]) << 24) | |
|---|
| 1972 | (word64(block[3]) << 32) | |
|---|
| 1973 | (word64(block[2]) << 40) | |
|---|
| 1974 | (word64(block[1]) << 48) | |
|---|
| 1975 | (word64(block[0]) << 56)) |
|---|
| 1976 | : |
|---|
| 1977 | (word64(block[0]) | |
|---|
| 1978 | (word64(block[1]) << 8) | |
|---|
| 1979 | (word64(block[2]) << 16) | |
|---|
| 1980 | (word64(block[3]) << 24) | |
|---|
| 1981 | (word64(block[4]) << 32) | |
|---|
| 1982 | (word64(block[5]) << 40) | |
|---|
| 1983 | (word64(block[6]) << 48) | |
|---|
| 1984 | (word64(block[7]) << 56)); |
|---|
| 1985 | } |
|---|
| 1986 | |
|---|
| 1987 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock) |
|---|
| 1988 | { |
|---|
| 1989 | CRYPTOPP_UNUSED(order); |
|---|
| 1990 | block[0] = (byte)(xorBlock ? (value ^ xorBlock[0]) : value); |
|---|
| 1991 | } |
|---|
| 1992 | |
|---|
| 1993 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock) |
|---|
| 1994 | { |
|---|
| 1995 | if (order == BIG_ENDIAN_ORDER) |
|---|
| 1996 | { |
|---|
| 1997 | if (xorBlock) |
|---|
| 1998 | { |
|---|
| 1999 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2000 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2001 | } |
|---|
| 2002 | else |
|---|
| 2003 | { |
|---|
| 2004 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2005 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2006 | } |
|---|
| 2007 | } |
|---|
| 2008 | else |
|---|
| 2009 | { |
|---|
| 2010 | if (xorBlock) |
|---|
| 2011 | { |
|---|
| 2012 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2013 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2014 | } |
|---|
| 2015 | else |
|---|
| 2016 | { |
|---|
| 2017 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2018 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2019 | } |
|---|
| 2020 | } |
|---|
| 2021 | } |
|---|
| 2022 | |
|---|
| 2023 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock) |
|---|
| 2024 | { |
|---|
| 2025 | if (order == BIG_ENDIAN_ORDER) |
|---|
| 2026 | { |
|---|
| 2027 | if (xorBlock) |
|---|
| 2028 | { |
|---|
| 2029 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2030 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2031 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2032 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2033 | } |
|---|
| 2034 | else |
|---|
| 2035 | { |
|---|
| 2036 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2037 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2038 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2039 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2040 | } |
|---|
| 2041 | } |
|---|
| 2042 | else |
|---|
| 2043 | { |
|---|
| 2044 | if (xorBlock) |
|---|
| 2045 | { |
|---|
| 2046 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2047 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2048 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2049 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2050 | } |
|---|
| 2051 | else |
|---|
| 2052 | { |
|---|
| 2053 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2054 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2055 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2056 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2057 | } |
|---|
| 2058 | } |
|---|
| 2059 | } |
|---|
| 2060 | |
|---|
| 2061 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock) |
|---|
| 2062 | { |
|---|
| 2063 | if (order == BIG_ENDIAN_ORDER) |
|---|
| 2064 | { |
|---|
| 2065 | if (xorBlock) |
|---|
| 2066 | { |
|---|
| 2067 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|---|
| 2068 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|---|
| 2069 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|---|
| 2070 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|---|
| 2071 | block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2072 | block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2073 | block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2074 | block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2075 | } |
|---|
| 2076 | else |
|---|
| 2077 | { |
|---|
| 2078 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|---|
| 2079 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|---|
| 2080 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|---|
| 2081 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|---|
| 2082 | block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2083 | block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2084 | block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2085 | block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2086 | } |
|---|
| 2087 | } |
|---|
| 2088 | else |
|---|
| 2089 | { |
|---|
| 2090 | if (xorBlock) |
|---|
| 2091 | { |
|---|
| 2092 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2093 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2094 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2095 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2096 | block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|---|
| 2097 | block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|---|
| 2098 | block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|---|
| 2099 | block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|---|
| 2100 | } |
|---|
| 2101 | else |
|---|
| 2102 | { |
|---|
| 2103 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
|---|
| 2104 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
|---|
| 2105 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
|---|
| 2106 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
|---|
| 2107 | block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
|---|
| 2108 | block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
|---|
| 2109 | block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
|---|
| 2110 | block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
|---|
| 2111 | } |
|---|
| 2112 | } |
|---|
| 2113 | } |
|---|
| 2114 | #endif // #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|---|
| 2115 | |
|---|
| 2116 | template <class T> |
|---|
| 2117 | inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block) |
|---|
| 2118 | { |
|---|
| 2119 | //#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|---|
| 2120 | // if (!assumeAligned) |
|---|
| 2121 | // return UnalignedGetWordNonTemplate(order, block, (T*)NULL); |
|---|
| 2122 | // CRYPTOPP_ASSERT(IsAligned<T>(block)); |
|---|
| 2123 | //#endif |
|---|
| 2124 | // return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block)); |
|---|
| 2125 | CRYPTOPP_UNUSED(assumeAligned); |
|---|
| 2126 | #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|---|
| 2127 | return ConditionalByteReverse(order, *reinterpret_cast<const T *>((const void *)block)); |
|---|
| 2128 | #else |
|---|
| 2129 | T temp; |
|---|
| 2130 | memcpy(&temp, block, sizeof(T)); |
|---|
| 2131 | return ConditionalByteReverse(order, temp); |
|---|
| 2132 | #endif |
|---|
| 2133 | } |
|---|
| 2134 | |
|---|
| 2135 | template <class T> |
|---|
| 2136 | inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block) |
|---|
| 2137 | { |
|---|
| 2138 | result = GetWord<T>(assumeAligned, order, block); |
|---|
| 2139 | } |
|---|
| 2140 | |
|---|
| 2141 | template <class T> |
|---|
| 2142 | inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL) |
|---|
| 2143 | { |
|---|
| 2144 | //#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|---|
| 2145 | // if (!assumeAligned) |
|---|
| 2146 | // return UnalignedbyteNonTemplate(order, block, value, xorBlock); |
|---|
| 2147 | // CRYPTOPP_ASSERT(IsAligned<T>(block)); |
|---|
| 2148 | // CRYPTOPP_ASSERT(IsAligned<T>(xorBlock)); |
|---|
| 2149 | //#endif |
|---|
| 2150 | // *reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0); |
|---|
| 2151 | CRYPTOPP_UNUSED(assumeAligned); |
|---|
| 2152 | #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
|---|
| 2153 | *reinterpret_cast<T *>((void *)block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>((const void *)xorBlock) : 0); |
|---|
| 2154 | #else |
|---|
| 2155 | T t1, t2 = 0; |
|---|
| 2156 | t1 = ConditionalByteReverse(order, value); |
|---|
| 2157 | if (xorBlock) memcpy(&t2, xorBlock, sizeof(T)); |
|---|
| 2158 | memmove(block, &(t1 ^= t2), sizeof(T)); |
|---|
| 2159 | #endif |
|---|
| 2160 | } |
|---|
| 2161 | |
|---|
| 2162 | //! \class GetBlock |
|---|
| 2163 | //! \brief Access a block of memory |
|---|
| 2164 | //! \tparam T class or type |
|---|
| 2165 | //! \tparam B enumeration indicating endianess |
|---|
| 2166 | //! \tparam A flag indicating alignment |
|---|
| 2167 | //! \details GetBlock() provides alternate read access to a block of memory. The enumeration B is |
|---|
| 2168 | //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. |
|---|
| 2169 | //! Repeatedly applying operator() results in advancing in the block of memory. |
|---|
| 2170 | //! \details An example of reading two word32 values from a block of memory is shown below. <tt>w1</tt> |
|---|
| 2171 | //! will be <tt>0x03020100</tt> and <tt>w1</tt> will be <tt>0x07060504</tt>. |
|---|
| 2172 | //! <pre> |
|---|
| 2173 | //! word32 w1, w2; |
|---|
| 2174 | //! byte buffer[8] = {0,1,2,3,4,5,6,7}; |
|---|
| 2175 | //! GetBlock<word32, LittleEndian> block(buffer); |
|---|
| 2176 | //! block(w1)(w2); |
|---|
| 2177 | //! </pre> |
|---|
| 2178 | template <class T, class B, bool A=false> |
|---|
| 2179 | class GetBlock |
|---|
| 2180 | { |
|---|
| 2181 | public: |
|---|
| 2182 | //! \brief Construct a GetBlock |
|---|
| 2183 | //! \param block the memory block |
|---|
| 2184 | GetBlock(const void *block) |
|---|
| 2185 | : m_block((const byte *)block) {} |
|---|
| 2186 | |
|---|
| 2187 | //! \brief Access a block of memory |
|---|
| 2188 | //! \tparam U class or type |
|---|
| 2189 | //! \param x the value to read |
|---|
| 2190 | //! \returns pointer to the remainder of the block after reading x |
|---|
| 2191 | template <class U> |
|---|
| 2192 | inline GetBlock<T, B, A> & operator()(U &x) |
|---|
| 2193 | { |
|---|
| 2194 | CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T)); |
|---|
| 2195 | x = GetWord<T>(A, B::ToEnum(), m_block); |
|---|
| 2196 | m_block += sizeof(T); |
|---|
| 2197 | return *this; |
|---|
| 2198 | } |
|---|
| 2199 | |
|---|
| 2200 | private: |
|---|
| 2201 | const byte *m_block; |
|---|
| 2202 | }; |
|---|
| 2203 | |
|---|
| 2204 | //! \class PutBlock |
|---|
| 2205 | //! \brief Access a block of memory |
|---|
| 2206 | //! \tparam T class or type |
|---|
| 2207 | //! \tparam B enumeration indicating endianess |
|---|
| 2208 | //! \tparam A flag indicating alignment |
|---|
| 2209 | //! \details PutBlock() provides alternate write access to a block of memory. The enumeration B is |
|---|
| 2210 | //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. |
|---|
| 2211 | //! Repeatedly applying operator() results in advancing in the block of memory. |
|---|
| 2212 | //! \details An example of writing two word32 values from a block of memory is shown below. After the code |
|---|
| 2213 | //! executes, the byte buffer will be <tt>{0,1,2,3,4,5,6,7}</tt>. |
|---|
| 2214 | //! <pre> |
|---|
| 2215 | //! word32 w1=0x03020100, w2=0x07060504; |
|---|
| 2216 | //! byte buffer[8]; |
|---|
| 2217 | //! PutBlock<word32, LittleEndian> block(NULL, buffer); |
|---|
| 2218 | //! block(w1)(w2); |
|---|
| 2219 | //! </pre> |
|---|
| 2220 | template <class T, class B, bool A=false> |
|---|
| 2221 | class PutBlock |
|---|
| 2222 | { |
|---|
| 2223 | public: |
|---|
| 2224 | //! \brief Construct a PutBlock |
|---|
| 2225 | //! \param block the memory block |
|---|
| 2226 | //! \param xorBlock optional mask |
|---|
| 2227 | PutBlock(const void *xorBlock, void *block) |
|---|
| 2228 | : m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {} |
|---|
| 2229 | |
|---|
| 2230 | //! \brief Access a block of memory |
|---|
| 2231 | //! \tparam U class or type |
|---|
| 2232 | //! \param x the value to write |
|---|
| 2233 | //! \returns pointer to the remainder of the block after writing x |
|---|
| 2234 | template <class U> |
|---|
| 2235 | inline PutBlock<T, B, A> & operator()(U x) |
|---|
| 2236 | { |
|---|
| 2237 | PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock); |
|---|
| 2238 | m_block += sizeof(T); |
|---|
| 2239 | if (m_xorBlock) |
|---|
| 2240 | m_xorBlock += sizeof(T); |
|---|
| 2241 | return *this; |
|---|
| 2242 | } |
|---|
| 2243 | |
|---|
| 2244 | private: |
|---|
| 2245 | const byte *m_xorBlock; |
|---|
| 2246 | byte *m_block; |
|---|
| 2247 | }; |
|---|
| 2248 | |
|---|
| 2249 | //! \class BlockGetAndPut |
|---|
| 2250 | //! \brief Access a block of memory |
|---|
| 2251 | //! \tparam T class or type |
|---|
| 2252 | //! \tparam B enumeration indicating endianess |
|---|
| 2253 | //! \tparam GA flag indicating alignment for the Get operation |
|---|
| 2254 | //! \tparam PA flag indicating alignment for the Put operation |
|---|
| 2255 | //! \details GetBlock() provides alternate write access to a block of memory. The enumeration B is |
|---|
| 2256 | //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. |
|---|
| 2257 | //! \sa GetBlock() and PutBlock(). |
|---|
| 2258 | template <class T, class B, bool GA=false, bool PA=false> |
|---|
| 2259 | struct BlockGetAndPut |
|---|
| 2260 | { |
|---|
| 2261 | // function needed because of C++ grammatical ambiguity between expression-statements and declarations |
|---|
| 2262 | static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);} |
|---|
| 2263 | typedef PutBlock<T, B, PA> Put; |
|---|
| 2264 | }; |
|---|
| 2265 | |
|---|
| 2266 | template <class T> |
|---|
| 2267 | std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER) |
|---|
| 2268 | { |
|---|
| 2269 | if (!NativeByteOrderIs(order)) |
|---|
| 2270 | value = ByteReverse(value); |
|---|
| 2271 | |
|---|
| 2272 | return std::string((char *)&value, sizeof(value)); |
|---|
| 2273 | } |
|---|
| 2274 | |
|---|
| 2275 | template <class T> |
|---|
| 2276 | T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER) |
|---|
| 2277 | { |
|---|
| 2278 | T value = 0; |
|---|
| 2279 | memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value))); |
|---|
| 2280 | return NativeByteOrderIs(order) ? value : ByteReverse(value); |
|---|
| 2281 | } |
|---|
| 2282 | |
|---|
| 2283 | // ************** help remove warning on g++ *************** |
|---|
| 2284 | |
|---|
| 2285 | //! \class SafeShifter |
|---|
| 2286 | //! \brief Safely shift values when undefined behavior could occur |
|---|
| 2287 | //! \tparam overflow boolean flag indicating if overflow is present |
|---|
| 2288 | //! \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules. |
|---|
| 2289 | //! The class behaves much like a saturating arithmetic class, clamping values rather than allowing |
|---|
| 2290 | //! the compiler to remove undefined behavior. |
|---|
| 2291 | //! \sa SafeShifter<true>, SafeShifter<false> |
|---|
| 2292 | template <bool overflow> struct SafeShifter; |
|---|
| 2293 | |
|---|
| 2294 | //! \class SafeShifter<true> |
|---|
| 2295 | //! \brief Shifts a value in the presence of overflow |
|---|
| 2296 | //! \details the \p true template parameter indicates overflow would occur. |
|---|
| 2297 | //! In this case, SafeShifter clamps the value and returns 0. |
|---|
| 2298 | template<> struct SafeShifter<true> |
|---|
| 2299 | { |
|---|
| 2300 | //! \brief Right shifts a value that overflows |
|---|
| 2301 | //! \tparam T class or type |
|---|
| 2302 | //! \return 0 |
|---|
| 2303 | //! \details Since <tt>overflow == true</tt>, the value 0 is always returned. |
|---|
| 2304 | //! \sa SafeLeftShift |
|---|
| 2305 | template <class T> |
|---|
| 2306 | static inline T RightShift(T value, unsigned int bits) |
|---|
| 2307 | { |
|---|
| 2308 | CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits); |
|---|
| 2309 | return 0; |
|---|
| 2310 | } |
|---|
| 2311 | |
|---|
| 2312 | //! \brief Left shifts a value that overflows |
|---|
| 2313 | //! \tparam T class or type |
|---|
| 2314 | //! \return 0 |
|---|
| 2315 | //! \details Since <tt>overflow == true</tt>, the value 0 is always returned. |
|---|
| 2316 | //! \sa SafeRightShift |
|---|
| 2317 | template <class T> |
|---|
| 2318 | static inline T LeftShift(T value, unsigned int bits) |
|---|
| 2319 | { |
|---|
| 2320 | CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits); |
|---|
| 2321 | return 0; |
|---|
| 2322 | } |
|---|
| 2323 | }; |
|---|
| 2324 | |
|---|
| 2325 | //! \class SafeShifter<false> |
|---|
| 2326 | //! \brief Shifts a value in the absence of overflow |
|---|
| 2327 | //! \details the \p false template parameter indicates overflow would \a not occur. |
|---|
| 2328 | //! In this case, SafeShifter returns the shfted value. |
|---|
| 2329 | template<> struct SafeShifter<false> |
|---|
| 2330 | { |
|---|
| 2331 | //! \brief Right shifts a value that does not overflow |
|---|
| 2332 | //! \tparam T class or type |
|---|
| 2333 | //! \return the shifted value |
|---|
| 2334 | //! \details Since <tt>overflow == false</tt>, the shifted value is returned. |
|---|
| 2335 | //! \sa SafeLeftShift |
|---|
| 2336 | template <class T> |
|---|
| 2337 | static inline T RightShift(T value, unsigned int bits) |
|---|
| 2338 | { |
|---|
| 2339 | return value >> bits; |
|---|
| 2340 | } |
|---|
| 2341 | |
|---|
| 2342 | //! \brief Left shifts a value that does not overflow |
|---|
| 2343 | //! \tparam T class or type |
|---|
| 2344 | //! \return the shifted value |
|---|
| 2345 | //! \details Since <tt>overflow == false</tt>, the shifted value is returned. |
|---|
| 2346 | //! \sa SafeRightShift |
|---|
| 2347 | template <class T> |
|---|
| 2348 | static inline T LeftShift(T value, unsigned int bits) |
|---|
| 2349 | { |
|---|
| 2350 | return value << bits; |
|---|
| 2351 | } |
|---|
| 2352 | }; |
|---|
| 2353 | |
|---|
| 2354 | //! \class SafeRightShift |
|---|
| 2355 | //! \brief Safely right shift values when undefined behavior could occur |
|---|
| 2356 | //! \tparam bits the number of bit positions to shift the value |
|---|
| 2357 | //! \tparam T class or type |
|---|
| 2358 | //! \param value the value to right shift |
|---|
| 2359 | //! \result the shifted value or 0 |
|---|
| 2360 | //! \details SafeRightShift safely shifts the value to the right when undefined behavior |
|---|
| 2361 | //! could occur under C/C++ rules. SafeRightShift will return the shifted value or 0 |
|---|
| 2362 | //! if undefined behavior would occur. |
|---|
| 2363 | template <unsigned int bits, class T> |
|---|
| 2364 | inline T SafeRightShift(T value) |
|---|
| 2365 | { |
|---|
| 2366 | return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits); |
|---|
| 2367 | } |
|---|
| 2368 | |
|---|
| 2369 | //! \class SafeLeftShift |
|---|
| 2370 | //! \brief Safely left shift values when undefined behavior could occur |
|---|
| 2371 | //! \tparam bits the number of bit positions to shift the value |
|---|
| 2372 | //! \tparam T class or type |
|---|
| 2373 | //! \param value the value to left shift |
|---|
| 2374 | //! \result the shifted value or 0 |
|---|
| 2375 | //! \details SafeLeftShift safely shifts the value to the left when undefined behavior |
|---|
| 2376 | //! could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0 |
|---|
| 2377 | //! if undefined behavior would occur. |
|---|
| 2378 | template <unsigned int bits, class T> |
|---|
| 2379 | inline T SafeLeftShift(T value) |
|---|
| 2380 | { |
|---|
| 2381 | return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits); |
|---|
| 2382 | } |
|---|
| 2383 | |
|---|
| 2384 | // ************** use one buffer for multiple data members *************** |
|---|
| 2385 | |
|---|
| 2386 | #define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2387 | #define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2388 | #define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2389 | #define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2390 | #define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2391 | #define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2392 | #define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2393 | #define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
|---|
| 2394 | #define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate; |
|---|
| 2395 | |
|---|
| 2396 | NAMESPACE_END |
|---|
| 2397 | |
|---|
| 2398 | #if CRYPTOPP_MSC_VERSION |
|---|
| 2399 | # pragma warning(pop) |
|---|
| 2400 | #endif |
|---|
| 2401 | |
|---|
| 2402 | #endif |
|---|