| 1 | #LyX 1.6.2 created this file. For more info see http://www.lyx.org/ |
|---|
| 2 | \lyxformat 345 |
|---|
| 3 | \begin_document |
|---|
| 4 | \begin_header |
|---|
| 5 | \textclass amsart |
|---|
| 6 | \use_default_options true |
|---|
| 7 | \begin_modules |
|---|
| 8 | theorems-ams |
|---|
| 9 | theorems-ams-extended |
|---|
| 10 | \end_modules |
|---|
| 11 | \language english |
|---|
| 12 | \inputencoding auto |
|---|
| 13 | \font_roman default |
|---|
| 14 | \font_sans default |
|---|
| 15 | \font_typewriter default |
|---|
| 16 | \font_default_family default |
|---|
| 17 | \font_sc false |
|---|
| 18 | \font_osf false |
|---|
| 19 | \font_sf_scale 100 |
|---|
| 20 | \font_tt_scale 100 |
|---|
| 21 | |
|---|
| 22 | \graphics default |
|---|
| 23 | \float_placement h |
|---|
| 24 | \paperfontsize default |
|---|
| 25 | \spacing single |
|---|
| 26 | \use_hyperref false |
|---|
| 27 | \papersize default |
|---|
| 28 | \use_geometry false |
|---|
| 29 | \use_amsmath 1 |
|---|
| 30 | \use_esint 1 |
|---|
| 31 | \cite_engine basic |
|---|
| 32 | \use_bibtopic false |
|---|
| 33 | \paperorientation portrait |
|---|
| 34 | \secnumdepth 3 |
|---|
| 35 | \tocdepth 3 |
|---|
| 36 | \paragraph_separation indent |
|---|
| 37 | \defskip medskip |
|---|
| 38 | \quotes_language english |
|---|
| 39 | \papercolumns 1 |
|---|
| 40 | \papersides 1 |
|---|
| 41 | \paperpagestyle default |
|---|
| 42 | \tracking_changes false |
|---|
| 43 | \output_changes false |
|---|
| 44 | \author "" |
|---|
| 45 | \author "" |
|---|
| 46 | \end_header |
|---|
| 47 | |
|---|
| 48 | \begin_body |
|---|
| 49 | |
|---|
| 50 | \begin_layout Title |
|---|
| 51 | Tahoe Distributed Filesharing System Loss Model |
|---|
| 52 | \end_layout |
|---|
| 53 | |
|---|
| 54 | \begin_layout Author |
|---|
| 55 | Shawn Willden |
|---|
| 56 | \end_layout |
|---|
| 57 | |
|---|
| 58 | \begin_layout Date |
|---|
| 59 | 07/22/2009 |
|---|
| 60 | \end_layout |
|---|
| 61 | |
|---|
| 62 | \begin_layout Address |
|---|
| 63 | South Weber, Utah |
|---|
| 64 | \end_layout |
|---|
| 65 | |
|---|
| 66 | \begin_layout Email |
|---|
| 67 | shawn@willden.org |
|---|
| 68 | \end_layout |
|---|
| 69 | |
|---|
| 70 | \begin_layout Abstract |
|---|
| 71 | The abstract goes here |
|---|
| 72 | \end_layout |
|---|
| 73 | |
|---|
| 74 | \begin_layout Section |
|---|
| 75 | Problem Statement |
|---|
| 76 | \end_layout |
|---|
| 77 | |
|---|
| 78 | \begin_layout Standard |
|---|
| 79 | The allmydata Tahoe distributed file system uses Reed-Solomon erasure coding |
|---|
| 80 | to split files into |
|---|
| 81 | \begin_inset Formula $N$ |
|---|
| 82 | \end_inset |
|---|
| 83 | |
|---|
| 84 | shares which are delivered to randomly-selected peers in a distributed |
|---|
| 85 | network. |
|---|
| 86 | The file can later be reassembled from any |
|---|
| 87 | \begin_inset Formula $k\leq N$ |
|---|
| 88 | \end_inset |
|---|
| 89 | |
|---|
| 90 | of the shares, if they are available. |
|---|
| 91 | \end_layout |
|---|
| 92 | |
|---|
| 93 | \begin_layout Standard |
|---|
| 94 | Over time shares are lost for a variety of reasons. |
|---|
| 95 | Storage servers may crash, be destroyed or simply be removed from the network. |
|---|
| 96 | To mitigate such losses, Tahoe network clients employ a repair agent which |
|---|
| 97 | scans the peers once per time period |
|---|
| 98 | \begin_inset Formula $A$ |
|---|
| 99 | \end_inset |
|---|
| 100 | |
|---|
| 101 | and determines how many of the shares remain. |
|---|
| 102 | If less than |
|---|
| 103 | \begin_inset Formula $L$ |
|---|
| 104 | \end_inset |
|---|
| 105 | |
|---|
| 106 | ( |
|---|
| 107 | \begin_inset Formula $k\leq L\leq N$ |
|---|
| 108 | \end_inset |
|---|
| 109 | |
|---|
| 110 | ) shares remain, then the repairer reconstructs the file shares and redistribute |
|---|
| 111 | s the missing ones, bringing the availability back up to full. |
|---|
| 112 | \end_layout |
|---|
| 113 | |
|---|
| 114 | \begin_layout Standard |
|---|
| 115 | The question we're trying to answer is "What is the probability that we'll |
|---|
| 116 | be able to reassemble the file at some later time |
|---|
| 117 | \begin_inset Formula $T$ |
|---|
| 118 | \end_inset |
|---|
| 119 | |
|---|
| 120 | ?". |
|---|
| 121 | We'd also like to be able to determine what values we should choose for |
|---|
| 122 | |
|---|
| 123 | \begin_inset Formula $k$ |
|---|
| 124 | \end_inset |
|---|
| 125 | |
|---|
| 126 | , |
|---|
| 127 | \begin_inset Formula $N$ |
|---|
| 128 | \end_inset |
|---|
| 129 | |
|---|
| 130 | , |
|---|
| 131 | \begin_inset Formula $A$ |
|---|
| 132 | \end_inset |
|---|
| 133 | |
|---|
| 134 | , and |
|---|
| 135 | \begin_inset Formula $L$ |
|---|
| 136 | \end_inset |
|---|
| 137 | |
|---|
| 138 | in order to ensure |
|---|
| 139 | \begin_inset Formula $Pr[loss]\leq r$ |
|---|
| 140 | \end_inset |
|---|
| 141 | |
|---|
| 142 | for some threshold probability |
|---|
| 143 | \begin_inset Formula $r$ |
|---|
| 144 | \end_inset |
|---|
| 145 | |
|---|
| 146 | . |
|---|
| 147 | This is an optimization problem because although we could obtain very low |
|---|
| 148 | |
|---|
| 149 | \begin_inset Formula $Pr[loss]$ |
|---|
| 150 | \end_inset |
|---|
| 151 | |
|---|
| 152 | by selecting conservative parameters, these choices have costs. |
|---|
| 153 | The peer storage and bandwidth consumed by the share distribution process |
|---|
| 154 | are approximately |
|---|
| 155 | \begin_inset Formula $\nicefrac{N}{k}$ |
|---|
| 156 | \end_inset |
|---|
| 157 | |
|---|
| 158 | times the size of the original file, so we would like to minimize |
|---|
| 159 | \begin_inset Formula $\nicefrac{N}{k}$ |
|---|
| 160 | \end_inset |
|---|
| 161 | |
|---|
| 162 | , consistent with |
|---|
| 163 | \begin_inset Formula $Pr[loss]\leq r$ |
|---|
| 164 | \end_inset |
|---|
| 165 | |
|---|
| 166 | . |
|---|
| 167 | Likewise, a frequent and aggressive repair process keeps the number of |
|---|
| 168 | shares available close to |
|---|
| 169 | \begin_inset Formula $N,$ |
|---|
| 170 | \end_inset |
|---|
| 171 | |
|---|
| 172 | but at a cost in bandwidth and processing time as the repair agent downloads |
|---|
| 173 | |
|---|
| 174 | \begin_inset Formula $k$ |
|---|
| 175 | \end_inset |
|---|
| 176 | |
|---|
| 177 | shares, reconstructs the file and uploads new shares to replace those that |
|---|
| 178 | are lost. |
|---|
| 179 | \end_layout |
|---|
| 180 | |
|---|
| 181 | \begin_layout Section |
|---|
| 182 | Reliability |
|---|
| 183 | \end_layout |
|---|
| 184 | |
|---|
| 185 | \begin_layout Standard |
|---|
| 186 | The probability that the file becomes unrecoverable is dependent upon the |
|---|
| 187 | probability that the peers to whom we send shares are able to return those |
|---|
| 188 | copies on demand. |
|---|
| 189 | Shares that are corrupted are detected and discarded, so there is no need |
|---|
| 190 | to distinguish between corruption and loss. |
|---|
| 191 | \end_layout |
|---|
| 192 | |
|---|
| 193 | \begin_layout Standard |
|---|
| 194 | Many factors affect share availability. |
|---|
| 195 | Availability can be temporarily interrupted by peer unavailability due |
|---|
| 196 | to network outages, power failures or administrative shutdown, among other |
|---|
| 197 | reasons. |
|---|
| 198 | Availability can be permanently lost due to failure or corruption of storage |
|---|
| 199 | media, catastrophic damage to the peer system, administrative error, withdrawal |
|---|
| 200 | from the network, malicious corruption, etc. |
|---|
| 201 | \end_layout |
|---|
| 202 | |
|---|
| 203 | \begin_layout Standard |
|---|
| 204 | The existence of intermittent failure modes motivates the introduction of |
|---|
| 205 | a distinction between |
|---|
| 206 | \noun on |
|---|
| 207 | availability |
|---|
| 208 | \noun default |
|---|
| 209 | and |
|---|
| 210 | \noun on |
|---|
| 211 | reliability |
|---|
| 212 | \noun default |
|---|
| 213 | . |
|---|
| 214 | Reliability is the probability that a share is retrievable assuming intermitten |
|---|
| 215 | t failures can be waited out, so reliability considers only permanent failures. |
|---|
| 216 | Availability considers all failures, and is focused on the probability |
|---|
| 217 | of retrieval within some defined time frame. |
|---|
| 218 | \end_layout |
|---|
| 219 | |
|---|
| 220 | \begin_layout Standard |
|---|
| 221 | Another consideration is that some failures affect multiple shares. |
|---|
| 222 | If multiple shares of a file are stored on a single hard drive, for example, |
|---|
| 223 | failure of that drive may lose them all. |
|---|
| 224 | Catastrophic damage to a data center may destroy all shares on all peers |
|---|
| 225 | in that data center. |
|---|
| 226 | \end_layout |
|---|
| 227 | |
|---|
| 228 | \begin_layout Standard |
|---|
| 229 | While the types of failures that may occur are quite consistent across peers, |
|---|
| 230 | their probabilities differ dramatically. |
|---|
| 231 | A professionally-administered server with redundant storage, power and |
|---|
| 232 | Internet located in a carefully-monitored data center with automatic fire |
|---|
| 233 | suppression systems is much less likely to become either temporarily or |
|---|
| 234 | permanently unavailable than the typical virus and malware-ridden home |
|---|
| 235 | computer on a single cable modem connection. |
|---|
| 236 | A variety of situations in between exist as well, such as the case of the |
|---|
| 237 | author's home file server, which is administered by an IT professional |
|---|
| 238 | and uses RAID level 6 redundant storage, but runs on old, cobbled-together |
|---|
| 239 | equipment, and has a consumer-grade Internet connection. |
|---|
| 240 | \end_layout |
|---|
| 241 | |
|---|
| 242 | \begin_layout Standard |
|---|
| 243 | To begin with, let's use a simple definition of reliability: |
|---|
| 244 | \end_layout |
|---|
| 245 | |
|---|
| 246 | \begin_layout Definition |
|---|
| 247 | |
|---|
| 248 | \noun on |
|---|
| 249 | Reliability |
|---|
| 250 | \noun default |
|---|
| 251 | is the probability |
|---|
| 252 | \begin_inset Formula $p_{i}$ |
|---|
| 253 | \end_inset |
|---|
| 254 | |
|---|
| 255 | that a share |
|---|
| 256 | \begin_inset Formula $s_{i}$ |
|---|
| 257 | \end_inset |
|---|
| 258 | |
|---|
| 259 | will survive to (be retrievable at) time |
|---|
| 260 | \begin_inset Formula $T=A$ |
|---|
| 261 | \end_inset |
|---|
| 262 | |
|---|
| 263 | , ignoring intermittent failures. |
|---|
| 264 | That is, the probability that the share will be retrievable at the end |
|---|
| 265 | of the current repair cycle, and therefore usable by the repairer to regenerate |
|---|
| 266 | any lost shares. |
|---|
| 267 | \end_layout |
|---|
| 268 | |
|---|
| 269 | \begin_layout Standard |
|---|
| 270 | Reliability |
|---|
| 271 | \begin_inset Formula $p_{i}$ |
|---|
| 272 | \end_inset |
|---|
| 273 | |
|---|
| 274 | is clearly dependent on |
|---|
| 275 | \begin_inset Formula $A$ |
|---|
| 276 | \end_inset |
|---|
| 277 | |
|---|
| 278 | . |
|---|
| 279 | Short repair cycles offer less time for shares to |
|---|
| 280 | \begin_inset Quotes eld |
|---|
| 281 | \end_inset |
|---|
| 282 | |
|---|
| 283 | decay |
|---|
| 284 | \begin_inset Quotes erd |
|---|
| 285 | \end_inset |
|---|
| 286 | |
|---|
| 287 | into unavailability. |
|---|
| 288 | \end_layout |
|---|
| 289 | |
|---|
| 290 | \begin_layout Subsection |
|---|
| 291 | Peer Reliability |
|---|
| 292 | \end_layout |
|---|
| 293 | |
|---|
| 294 | \begin_layout Standard |
|---|
| 295 | Since peer reliability is the basis for any computations we may do on share |
|---|
| 296 | and file reliability, we must have a way to estimate it. |
|---|
| 297 | Reliability modeling of hardware, software and human performance are each |
|---|
| 298 | complex topics, the subject of much ongoing research. |
|---|
| 299 | In particular, the reliability of one of the key components of any peer |
|---|
| 300 | from our perspective -- the hard drive where file shares are stored -- |
|---|
| 301 | is the subject of much current debate. |
|---|
| 302 | \end_layout |
|---|
| 303 | |
|---|
| 304 | \begin_layout Standard |
|---|
| 305 | A common assumption about hardware failure is that it follows the |
|---|
| 306 | \begin_inset Quotes eld |
|---|
| 307 | \end_inset |
|---|
| 308 | |
|---|
| 309 | bathtub curve |
|---|
| 310 | \begin_inset Quotes erd |
|---|
| 311 | \end_inset |
|---|
| 312 | |
|---|
| 313 | , with frequent failures during the first few months, a constant failure |
|---|
| 314 | rate for a few years and then a rising failure rate as the hardware wears |
|---|
| 315 | out. |
|---|
| 316 | This curve is often flattened by burn-in stress testing, and by periodic |
|---|
| 317 | replacement that assures that in-service components never reach |
|---|
| 318 | \begin_inset Quotes eld |
|---|
| 319 | \end_inset |
|---|
| 320 | |
|---|
| 321 | old age |
|---|
| 322 | \begin_inset Quotes erd |
|---|
| 323 | \end_inset |
|---|
| 324 | |
|---|
| 325 | . |
|---|
| 326 | \end_layout |
|---|
| 327 | |
|---|
| 328 | \begin_layout Standard |
|---|
| 329 | In any case, we're generally going to ignore all of that complexity and |
|---|
| 330 | focus on the bottom of the bathtub, assuming constant failure rates. |
|---|
| 331 | This is a particularly reasonable assumption as long as we're focused on |
|---|
| 332 | failures during a particular, relatively short interval |
|---|
| 333 | \begin_inset Formula $A$ |
|---|
| 334 | \end_inset |
|---|
| 335 | |
|---|
| 336 | . |
|---|
| 337 | Towards the end of this paper, as we examine failures over many repair |
|---|
| 338 | intervals, the assumption becomes more tenuous, and we note some of the |
|---|
| 339 | issues. |
|---|
| 340 | \end_layout |
|---|
| 341 | |
|---|
| 342 | \begin_layout Subsubsection |
|---|
| 343 | Estimate Adaptation |
|---|
| 344 | \end_layout |
|---|
| 345 | |
|---|
| 346 | \begin_layout Standard |
|---|
| 347 | Even assuming constant failure rates, however, it will be rare that the |
|---|
| 348 | duration of |
|---|
| 349 | \begin_inset Formula $A$ |
|---|
| 350 | \end_inset |
|---|
| 351 | |
|---|
| 352 | coincides with the available failure rate data, particularly since we want |
|---|
| 353 | to view |
|---|
| 354 | \begin_inset Formula $A$ |
|---|
| 355 | \end_inset |
|---|
| 356 | |
|---|
| 357 | as a tunable parameter. |
|---|
| 358 | It's necessary to be able adapt failure rates baselined against any given |
|---|
| 359 | duration to the selected value of |
|---|
| 360 | \begin_inset Formula $A$ |
|---|
| 361 | \end_inset |
|---|
| 362 | |
|---|
| 363 | . |
|---|
| 364 | \end_layout |
|---|
| 365 | |
|---|
| 366 | \begin_layout Standard |
|---|
| 367 | Another issue is that failure rates of hardware, etc., are necessarily continuous |
|---|
| 368 | in nature, while the per-interval failure/survival rates that are of interest |
|---|
| 369 | for file reliability calculations are discrete -- a peer either survives |
|---|
| 370 | or fails during the interval. |
|---|
| 371 | The continuous nature of failure rates means that the common and obvious |
|---|
| 372 | methods for estimating failure rates result in values that follow continuous, |
|---|
| 373 | not discrete distributions. |
|---|
| 374 | The difference is minor for small failure probabilities, and converges |
|---|
| 375 | to zero as the number of intervals goes to infinity, but is important enough |
|---|
| 376 | in some cases to be worth correcting for. |
|---|
| 377 | \end_layout |
|---|
| 378 | |
|---|
| 379 | \begin_layout Standard |
|---|
| 380 | Continuous failure rates are described in terms of mean time to failure, |
|---|
| 381 | and under the assumption that failure rates are constant, are exponentially |
|---|
| 382 | distributed. |
|---|
| 383 | Under these assumptions, the probability that a machine fails at time |
|---|
| 384 | \begin_inset Formula $t$ |
|---|
| 385 | \end_inset |
|---|
| 386 | |
|---|
| 387 | , is |
|---|
| 388 | \begin_inset Formula \[ |
|---|
| 389 | f\left(t\right)=\lambda e^{-\lambda t}\] |
|---|
| 390 | |
|---|
| 391 | \end_inset |
|---|
| 392 | |
|---|
| 393 | where |
|---|
| 394 | \begin_inset Formula $\lambda$ |
|---|
| 395 | \end_inset |
|---|
| 396 | |
|---|
| 397 | represents the per unit-time failure rate. |
|---|
| 398 | The probability that a machine fails at or before time |
|---|
| 399 | \begin_inset Formula $A$ |
|---|
| 400 | \end_inset |
|---|
| 401 | |
|---|
| 402 | is therefore |
|---|
| 403 | \begin_inset Formula \begin{align} |
|---|
| 404 | F\left(t\right) & =\int_{0}^{A}f\left(x\right)dx\nonumber \\ |
|---|
| 405 | & =\int_{0}^{A}\lambda e^{-\lambda x}dx\nonumber \\ |
|---|
| 406 | & =1-e^{-\lambda A}\label{eq:failure-time}\end{align} |
|---|
| 407 | |
|---|
| 408 | \end_inset |
|---|
| 409 | |
|---|
| 410 | |
|---|
| 411 | \end_layout |
|---|
| 412 | |
|---|
| 413 | \begin_layout Standard |
|---|
| 414 | Note that |
|---|
| 415 | \begin_inset Formula $A$ |
|---|
| 416 | \end_inset |
|---|
| 417 | |
|---|
| 418 | and |
|---|
| 419 | \begin_inset Formula $\lambda$ |
|---|
| 420 | \end_inset |
|---|
| 421 | |
|---|
| 422 | in |
|---|
| 423 | \begin_inset CommandInset ref |
|---|
| 424 | LatexCommand ref |
|---|
| 425 | reference "eq:failure-time" |
|---|
| 426 | |
|---|
| 427 | \end_inset |
|---|
| 428 | |
|---|
| 429 | must be expressed in consistent time units. |
|---|
| 430 | If they're different, unit conversions should be applied in the normal |
|---|
| 431 | way. |
|---|
| 432 | For example, if the estimate for |
|---|
| 433 | \begin_inset Formula $\lambda$ |
|---|
| 434 | \end_inset |
|---|
| 435 | |
|---|
| 436 | is 750 failures per million hours, and |
|---|
| 437 | \begin_inset Formula $A$ |
|---|
| 438 | \end_inset |
|---|
| 439 | |
|---|
| 440 | is one month, then either |
|---|
| 441 | \begin_inset Formula $A$ |
|---|
| 442 | \end_inset |
|---|
| 443 | |
|---|
| 444 | should be represented as |
|---|
| 445 | \begin_inset Formula $30\cdot24/1000000=.00072$ |
|---|
| 446 | \end_inset |
|---|
| 447 | |
|---|
| 448 | , or |
|---|
| 449 | \begin_inset Formula $\lambda$ |
|---|
| 450 | \end_inset |
|---|
| 451 | |
|---|
| 452 | should be converted to failures per month. |
|---|
| 453 | Or both may be converted to hours. |
|---|
| 454 | \end_layout |
|---|
| 455 | |
|---|
| 456 | \begin_layout Subsubsection |
|---|
| 457 | Acquiring Peer Reliability Estimates |
|---|
| 458 | \end_layout |
|---|
| 459 | |
|---|
| 460 | \begin_layout Standard |
|---|
| 461 | Need to write this. |
|---|
| 462 | \end_layout |
|---|
| 463 | |
|---|
| 464 | \begin_layout Subsection |
|---|
| 465 | Uniform Reliability |
|---|
| 466 | \begin_inset CommandInset label |
|---|
| 467 | LatexCommand label |
|---|
| 468 | name "sub:Fixed-Reliability" |
|---|
| 469 | |
|---|
| 470 | \end_inset |
|---|
| 471 | |
|---|
| 472 | |
|---|
| 473 | \end_layout |
|---|
| 474 | |
|---|
| 475 | \begin_layout Standard |
|---|
| 476 | In the simplest case, the peers holding the file shares all have the same |
|---|
| 477 | reliability |
|---|
| 478 | \begin_inset Formula $p$ |
|---|
| 479 | \end_inset |
|---|
| 480 | |
|---|
| 481 | , and are all independent from one another. |
|---|
| 482 | Let |
|---|
| 483 | \begin_inset Formula $K$ |
|---|
| 484 | \end_inset |
|---|
| 485 | |
|---|
| 486 | be a random variable that represents the number of shares that survive |
|---|
| 487 | |
|---|
| 488 | \begin_inset Formula $A$ |
|---|
| 489 | \end_inset |
|---|
| 490 | |
|---|
| 491 | . |
|---|
| 492 | Each share's survival can be viewed as an independent Bernoulli trial with |
|---|
| 493 | a success probability of |
|---|
| 494 | \begin_inset Formula $p$ |
|---|
| 495 | \end_inset |
|---|
| 496 | |
|---|
| 497 | , which means that |
|---|
| 498 | \begin_inset Formula $K$ |
|---|
| 499 | \end_inset |
|---|
| 500 | |
|---|
| 501 | follows the binomial distribution with parameters |
|---|
| 502 | \begin_inset Formula $N$ |
|---|
| 503 | \end_inset |
|---|
| 504 | |
|---|
| 505 | and |
|---|
| 506 | \begin_inset Formula $p$ |
|---|
| 507 | \end_inset |
|---|
| 508 | |
|---|
| 509 | . |
|---|
| 510 | That is, |
|---|
| 511 | \begin_inset Formula $K\sim B(N,p)$ |
|---|
| 512 | \end_inset |
|---|
| 513 | |
|---|
| 514 | . |
|---|
| 515 | \end_layout |
|---|
| 516 | |
|---|
| 517 | \begin_layout Theorem |
|---|
| 518 | Binomial Distribution Theorem |
|---|
| 519 | \end_layout |
|---|
| 520 | |
|---|
| 521 | \begin_layout Theorem |
|---|
| 522 | Consider |
|---|
| 523 | \begin_inset Formula $n$ |
|---|
| 524 | \end_inset |
|---|
| 525 | |
|---|
| 526 | independent Bernoulli trials |
|---|
| 527 | \begin_inset Foot |
|---|
| 528 | status collapsed |
|---|
| 529 | |
|---|
| 530 | \begin_layout Plain Layout |
|---|
| 531 | A Bernoulli trial is simply a test of some sort that results in one of two |
|---|
| 532 | outcomes, one of which is designated success and the other failure. |
|---|
| 533 | The classic example of a Bernoulli trial is a coin toss. |
|---|
| 534 | \end_layout |
|---|
| 535 | |
|---|
| 536 | \end_inset |
|---|
| 537 | |
|---|
| 538 | that succeed with probability |
|---|
| 539 | \begin_inset Formula $p$ |
|---|
| 540 | \end_inset |
|---|
| 541 | |
|---|
| 542 | , and let |
|---|
| 543 | \begin_inset Formula $K$ |
|---|
| 544 | \end_inset |
|---|
| 545 | |
|---|
| 546 | be a random variable that represents the number, |
|---|
| 547 | \begin_inset Formula $m$ |
|---|
| 548 | \end_inset |
|---|
| 549 | |
|---|
| 550 | , of successes, |
|---|
| 551 | \begin_inset Formula $0\le m\le n$ |
|---|
| 552 | \end_inset |
|---|
| 553 | |
|---|
| 554 | . |
|---|
| 555 | We say that |
|---|
| 556 | \begin_inset Formula $K$ |
|---|
| 557 | \end_inset |
|---|
| 558 | |
|---|
| 559 | follows the Binomial Distribution with parameters n and p, denoted |
|---|
| 560 | \begin_inset Formula $K\sim B(n,p)$ |
|---|
| 561 | \end_inset |
|---|
| 562 | |
|---|
| 563 | . |
|---|
| 564 | The probability mass function (PMF) of K is a function that gives the probabili |
|---|
| 565 | ty that |
|---|
| 566 | \begin_inset Formula $K$ |
|---|
| 567 | \end_inset |
|---|
| 568 | |
|---|
| 569 | takes a particular value |
|---|
| 570 | \begin_inset Formula $m$ |
|---|
| 571 | \end_inset |
|---|
| 572 | |
|---|
| 573 | (the probability that there are exactly |
|---|
| 574 | \begin_inset Formula $m$ |
|---|
| 575 | \end_inset |
|---|
| 576 | |
|---|
| 577 | successful trials, and therefore |
|---|
| 578 | \begin_inset Formula $n-m$ |
|---|
| 579 | \end_inset |
|---|
| 580 | |
|---|
| 581 | failures). |
|---|
| 582 | The PMF of K is |
|---|
| 583 | \begin_inset Formula \begin{equation} |
|---|
| 584 | Pr[K=m]=f(m;n,p)=\binom{n}{m}p^{m}(1-p)^{n-m}\label{eq:binomial-pmf}\end{equation} |
|---|
| 585 | |
|---|
| 586 | \end_inset |
|---|
| 587 | |
|---|
| 588 | |
|---|
| 589 | \end_layout |
|---|
| 590 | |
|---|
| 591 | \begin_layout Proof |
|---|
| 592 | Consider the specific case of exactly |
|---|
| 593 | \begin_inset Formula $m$ |
|---|
| 594 | \end_inset |
|---|
| 595 | |
|---|
| 596 | successes followed by |
|---|
| 597 | \begin_inset Formula $n-m$ |
|---|
| 598 | \end_inset |
|---|
| 599 | |
|---|
| 600 | failures, because each success has probability |
|---|
| 601 | \begin_inset Formula $p$ |
|---|
| 602 | \end_inset |
|---|
| 603 | |
|---|
| 604 | , each failure has probability |
|---|
| 605 | \begin_inset Formula $1-p$ |
|---|
| 606 | \end_inset |
|---|
| 607 | |
|---|
| 608 | , and the trials are independent, the probability of this exact case occurring |
|---|
| 609 | is |
|---|
| 610 | \begin_inset Formula $p^{m}\left(1-p\right)^{\left(n-m\right)}$ |
|---|
| 611 | \end_inset |
|---|
| 612 | |
|---|
| 613 | , the product of the probabilities of the outcome of each trial. |
|---|
| 614 | \end_layout |
|---|
| 615 | |
|---|
| 616 | \begin_layout Proof |
|---|
| 617 | Now consider any reordering of these |
|---|
| 618 | \begin_inset Formula $m$ |
|---|
| 619 | \end_inset |
|---|
| 620 | |
|---|
| 621 | successes and |
|---|
| 622 | \begin_inset Formula $n$ |
|---|
| 623 | \end_inset |
|---|
| 624 | |
|---|
| 625 | failures. |
|---|
| 626 | Any such reordering occurs with the same probability |
|---|
| 627 | \begin_inset Formula $p^{m}\left(1-p\right)^{\left(n-m\right)}$ |
|---|
| 628 | \end_inset |
|---|
| 629 | |
|---|
| 630 | , but with the terms of the product reordered. |
|---|
| 631 | Since multiplication is commutative, each such reordering has the same |
|---|
| 632 | probability. |
|---|
| 633 | There are n-choose-m such orderings, and each ordering is an independent |
|---|
| 634 | event, meaning we can sum the probabilities of the individual orderings, |
|---|
| 635 | so the probability that any ordering of |
|---|
| 636 | \begin_inset Formula $m$ |
|---|
| 637 | \end_inset |
|---|
| 638 | |
|---|
| 639 | successes and |
|---|
| 640 | \begin_inset Formula $n-m$ |
|---|
| 641 | \end_inset |
|---|
| 642 | |
|---|
| 643 | failures occurs is given by |
|---|
| 644 | \begin_inset Formula \[ |
|---|
| 645 | \binom{n}{m}p^{m}\left(1-p\right)^{\left(n-m\right)}\] |
|---|
| 646 | |
|---|
| 647 | \end_inset |
|---|
| 648 | |
|---|
| 649 | which is the right-hand-side of equation |
|---|
| 650 | \begin_inset CommandInset ref |
|---|
| 651 | LatexCommand ref |
|---|
| 652 | reference "eq:binomial-pmf" |
|---|
| 653 | |
|---|
| 654 | \end_inset |
|---|
| 655 | |
|---|
| 656 | . |
|---|
| 657 | \end_layout |
|---|
| 658 | |
|---|
| 659 | \begin_layout Standard |
|---|
| 660 | A file survives if at least |
|---|
| 661 | \begin_inset Formula $k$ |
|---|
| 662 | \end_inset |
|---|
| 663 | |
|---|
| 664 | of the |
|---|
| 665 | \begin_inset Formula $N$ |
|---|
| 666 | \end_inset |
|---|
| 667 | |
|---|
| 668 | shares survive. |
|---|
| 669 | Equation |
|---|
| 670 | \begin_inset CommandInset ref |
|---|
| 671 | LatexCommand ref |
|---|
| 672 | reference "eq:binomial-pmf" |
|---|
| 673 | |
|---|
| 674 | \end_inset |
|---|
| 675 | |
|---|
| 676 | gives the probability that exactly |
|---|
| 677 | \begin_inset Formula $i$ |
|---|
| 678 | \end_inset |
|---|
| 679 | |
|---|
| 680 | shares survive, for any |
|---|
| 681 | \begin_inset Formula $1\leq i\leq n$ |
|---|
| 682 | \end_inset |
|---|
| 683 | |
|---|
| 684 | , so the probability that fewer than |
|---|
| 685 | \begin_inset Formula $k$ |
|---|
| 686 | \end_inset |
|---|
| 687 | |
|---|
| 688 | survive is the sum of the probabilities that |
|---|
| 689 | \begin_inset Formula $0,1,2,\ldots,k-1$ |
|---|
| 690 | \end_inset |
|---|
| 691 | |
|---|
| 692 | shares survive. |
|---|
| 693 | That is: |
|---|
| 694 | \end_layout |
|---|
| 695 | |
|---|
| 696 | \begin_layout Standard |
|---|
| 697 | \begin_inset Formula \begin{equation} |
|---|
| 698 | Pr[file\, lost]=\sum_{i=0}^{k-1}\binom{n}{i}p^{i}(1-p)^{n-i}\label{eq:simple-failure}\end{equation} |
|---|
| 699 | |
|---|
| 700 | \end_inset |
|---|
| 701 | |
|---|
| 702 | |
|---|
| 703 | \end_layout |
|---|
| 704 | |
|---|
| 705 | \begin_layout Subsection |
|---|
| 706 | Independent Reliability |
|---|
| 707 | \begin_inset CommandInset label |
|---|
| 708 | LatexCommand label |
|---|
| 709 | name "sub:Independent-Reliability" |
|---|
| 710 | |
|---|
| 711 | \end_inset |
|---|
| 712 | |
|---|
| 713 | |
|---|
| 714 | \end_layout |
|---|
| 715 | |
|---|
| 716 | \begin_layout Standard |
|---|
| 717 | Equation |
|---|
| 718 | \begin_inset CommandInset ref |
|---|
| 719 | LatexCommand ref |
|---|
| 720 | reference "eq:simple-failure" |
|---|
| 721 | |
|---|
| 722 | \end_inset |
|---|
| 723 | |
|---|
| 724 | assumes that all shares have the same probability of survival, but as explained |
|---|
| 725 | above, this is not necessarily true. |
|---|
| 726 | A more accurate model allows each share |
|---|
| 727 | \begin_inset Formula $s_{i}$ |
|---|
| 728 | \end_inset |
|---|
| 729 | |
|---|
| 730 | an independent probability of survival |
|---|
| 731 | \begin_inset Formula $p_{i}$ |
|---|
| 732 | \end_inset |
|---|
| 733 | |
|---|
| 734 | . |
|---|
| 735 | Each share's survival can still be treated as an independent Bernoulli |
|---|
| 736 | trial, but with success probability |
|---|
| 737 | \begin_inset Formula $p_{i}$ |
|---|
| 738 | \end_inset |
|---|
| 739 | |
|---|
| 740 | . |
|---|
| 741 | Under this assumption, |
|---|
| 742 | \begin_inset Formula $K$ |
|---|
| 743 | \end_inset |
|---|
| 744 | |
|---|
| 745 | follows a generalized binomial distribution with parameters |
|---|
| 746 | \begin_inset Formula $N$ |
|---|
| 747 | \end_inset |
|---|
| 748 | |
|---|
| 749 | and |
|---|
| 750 | \begin_inset Formula $p_{1},p_{2},\dots,p_{N}$ |
|---|
| 751 | \end_inset |
|---|
| 752 | |
|---|
| 753 | . |
|---|
| 754 | \end_layout |
|---|
| 755 | |
|---|
| 756 | \begin_layout Standard |
|---|
| 757 | The PMF for this generalized |
|---|
| 758 | \begin_inset Formula $K$ |
|---|
| 759 | \end_inset |
|---|
| 760 | |
|---|
| 761 | does not have a simple closed-form representation. |
|---|
| 762 | However, the PMFs for random variables representing individual share survival |
|---|
| 763 | do. |
|---|
| 764 | Let |
|---|
| 765 | \begin_inset Formula $K_{i}$ |
|---|
| 766 | \end_inset |
|---|
| 767 | |
|---|
| 768 | be a random variable such that: |
|---|
| 769 | \end_layout |
|---|
| 770 | |
|---|
| 771 | \begin_layout Standard |
|---|
| 772 | \begin_inset Formula \[ |
|---|
| 773 | K_{i}=\begin{cases} |
|---|
| 774 | 1 & \textnormal{if }s_{i}\textnormal{ survives}\\ |
|---|
| 775 | 0 & \textnormal{if }s_{i}\textnormal{ fails}\end{cases}\] |
|---|
| 776 | |
|---|
| 777 | \end_inset |
|---|
| 778 | |
|---|
| 779 | |
|---|
| 780 | \end_layout |
|---|
| 781 | |
|---|
| 782 | \begin_layout Standard |
|---|
| 783 | The PMF for |
|---|
| 784 | \begin_inset Formula $K_{i}$ |
|---|
| 785 | \end_inset |
|---|
| 786 | |
|---|
| 787 | is very simple: |
|---|
| 788 | \begin_inset Formula \[ |
|---|
| 789 | Pr[K_{i}=j]=\begin{cases} |
|---|
| 790 | p_{i} & j=1\\ |
|---|
| 791 | 1-p_{i} & j=0\end{cases}\] |
|---|
| 792 | |
|---|
| 793 | \end_inset |
|---|
| 794 | |
|---|
| 795 | which can also be expressed as |
|---|
| 796 | \begin_inset Formula \[ |
|---|
| 797 | Pr[K_{i}=j]=f\left(j\right)=\left(1-p_{i}\right)\left(1-j\right)+p_{i}\left(j\right)\] |
|---|
| 798 | |
|---|
| 799 | \end_inset |
|---|
| 800 | |
|---|
| 801 | |
|---|
| 802 | \end_layout |
|---|
| 803 | |
|---|
| 804 | \begin_layout Standard |
|---|
| 805 | Note that since each |
|---|
| 806 | \begin_inset Formula $K_{i}$ |
|---|
| 807 | \end_inset |
|---|
| 808 | |
|---|
| 809 | represents the count of shares |
|---|
| 810 | \begin_inset Formula $s_{i}$ |
|---|
| 811 | \end_inset |
|---|
| 812 | |
|---|
| 813 | that survives (either 0 or 1), if we add up all of the individual survivor |
|---|
| 814 | counts, we get the group survivor count. |
|---|
| 815 | That is: |
|---|
| 816 | \begin_inset Formula \[ |
|---|
| 817 | \sum_{i=1}^{N}K_{i}=K\] |
|---|
| 818 | |
|---|
| 819 | \end_inset |
|---|
| 820 | |
|---|
| 821 | Effectively, we have separated |
|---|
| 822 | \begin_inset Formula $K$ |
|---|
| 823 | \end_inset |
|---|
| 824 | |
|---|
| 825 | into the series of Bernoulli trials that make it up. |
|---|
| 826 | \end_layout |
|---|
| 827 | |
|---|
| 828 | \begin_layout Theorem |
|---|
| 829 | Discrete Convolution Theorem |
|---|
| 830 | \end_layout |
|---|
| 831 | |
|---|
| 832 | \begin_layout Theorem |
|---|
| 833 | Let |
|---|
| 834 | \begin_inset Formula $X$ |
|---|
| 835 | \end_inset |
|---|
| 836 | |
|---|
| 837 | and |
|---|
| 838 | \begin_inset Formula $Y$ |
|---|
| 839 | \end_inset |
|---|
| 840 | |
|---|
| 841 | be discrete random variables with probability mass functions given by |
|---|
| 842 | \begin_inset Formula $Pr\left[X=x\right]=f(x)$ |
|---|
| 843 | \end_inset |
|---|
| 844 | |
|---|
| 845 | and |
|---|
| 846 | \begin_inset Formula $Pr\left[Y=y\right]=g(y).$ |
|---|
| 847 | \end_inset |
|---|
| 848 | |
|---|
| 849 | Let |
|---|
| 850 | \begin_inset Formula $Z$ |
|---|
| 851 | \end_inset |
|---|
| 852 | |
|---|
| 853 | be the discrete random random variable obtained by summing |
|---|
| 854 | \begin_inset Formula $X$ |
|---|
| 855 | \end_inset |
|---|
| 856 | |
|---|
| 857 | and |
|---|
| 858 | \begin_inset Formula $Y$ |
|---|
| 859 | \end_inset |
|---|
| 860 | |
|---|
| 861 | . |
|---|
| 862 | \end_layout |
|---|
| 863 | |
|---|
| 864 | \begin_layout Theorem |
|---|
| 865 | The probability mass function of |
|---|
| 866 | \begin_inset Formula $Z$ |
|---|
| 867 | \end_inset |
|---|
| 868 | |
|---|
| 869 | is given by |
|---|
| 870 | \begin_inset Formula \[ |
|---|
| 871 | Pr[Z=z]=h(z)=\left(f\star g\right)(z)\] |
|---|
| 872 | |
|---|
| 873 | \end_inset |
|---|
| 874 | |
|---|
| 875 | where |
|---|
| 876 | \begin_inset Formula $\star$ |
|---|
| 877 | \end_inset |
|---|
| 878 | |
|---|
| 879 | denotes the discrete convolution operation: |
|---|
| 880 | \begin_inset Formula \[ |
|---|
| 881 | \left(f\star g\right)\left(n\right)=\sum_{m=-\infty}^{\infty}f\left(m\right)g\left(m-n\right)\] |
|---|
| 882 | |
|---|
| 883 | \end_inset |
|---|
| 884 | |
|---|
| 885 | |
|---|
| 886 | \end_layout |
|---|
| 887 | |
|---|
| 888 | \begin_layout Proof |
|---|
| 889 | The proof is beyond the scope of this paper. |
|---|
| 890 | \end_layout |
|---|
| 891 | |
|---|
| 892 | \begin_layout Standard |
|---|
| 893 | If we denote the PMF of |
|---|
| 894 | \begin_inset Formula $K$ |
|---|
| 895 | \end_inset |
|---|
| 896 | |
|---|
| 897 | with |
|---|
| 898 | \begin_inset Formula $f$ |
|---|
| 899 | \end_inset |
|---|
| 900 | |
|---|
| 901 | and the PMF of |
|---|
| 902 | \begin_inset Formula $K_{i}$ |
|---|
| 903 | \end_inset |
|---|
| 904 | |
|---|
| 905 | with |
|---|
| 906 | \begin_inset Formula $g_{i}$ |
|---|
| 907 | \end_inset |
|---|
| 908 | |
|---|
| 909 | (more formally, |
|---|
| 910 | \begin_inset Formula $Pr[K=x]=f(x)$ |
|---|
| 911 | \end_inset |
|---|
| 912 | |
|---|
| 913 | and |
|---|
| 914 | \begin_inset Formula $Pr[K_{i}=x]=g_{i}(x)$ |
|---|
| 915 | \end_inset |
|---|
| 916 | |
|---|
| 917 | ) then since |
|---|
| 918 | \begin_inset Formula $K=\sum_{i=1}^{N}K_{i}$ |
|---|
| 919 | \end_inset |
|---|
| 920 | |
|---|
| 921 | , according to the discrete convolution theorem |
|---|
| 922 | \begin_inset Formula $f=g_{1}\star g_{2}\star g_{3}\star\ldots\star g_{N}$ |
|---|
| 923 | \end_inset |
|---|
| 924 | |
|---|
| 925 | . |
|---|
| 926 | Since convolution is associative, this can also be written as |
|---|
| 927 | \begin_inset Formula $ $ |
|---|
| 928 | \end_inset |
|---|
| 929 | |
|---|
| 930 | |
|---|
| 931 | \begin_inset Formula \begin{equation} |
|---|
| 932 | f=(\ldots((g_{1}\star g_{2})\star g_{3})\star\ldots)\star g_{N})\label{eq:convolution}\end{equation} |
|---|
| 933 | |
|---|
| 934 | \end_inset |
|---|
| 935 | |
|---|
| 936 | Therefore, |
|---|
| 937 | \begin_inset Formula $f$ |
|---|
| 938 | \end_inset |
|---|
| 939 | |
|---|
| 940 | can be computed as a sequence of convolution operations on the simple PMFs |
|---|
| 941 | of the random variables |
|---|
| 942 | \begin_inset Formula $K_{i}$ |
|---|
| 943 | \end_inset |
|---|
| 944 | |
|---|
| 945 | . |
|---|
| 946 | In fact, for large |
|---|
| 947 | \begin_inset Formula $N$ |
|---|
| 948 | \end_inset |
|---|
| 949 | |
|---|
| 950 | , equation |
|---|
| 951 | \begin_inset CommandInset ref |
|---|
| 952 | LatexCommand ref |
|---|
| 953 | reference "eq:convolution" |
|---|
| 954 | |
|---|
| 955 | \end_inset |
|---|
| 956 | |
|---|
| 957 | turns out to be a more effective means of computing the PMF of |
|---|
| 958 | \begin_inset Formula $K$ |
|---|
| 959 | \end_inset |
|---|
| 960 | |
|---|
| 961 | than the binomial theorem. |
|---|
| 962 | even in the case of shares with identical survival probability. |
|---|
| 963 | The reason it's better is because the calculation of |
|---|
| 964 | \begin_inset Formula $\binom{n}{m}$ |
|---|
| 965 | \end_inset |
|---|
| 966 | |
|---|
| 967 | in equation |
|---|
| 968 | \begin_inset CommandInset ref |
|---|
| 969 | LatexCommand ref |
|---|
| 970 | reference "eq:binomial-pmf" |
|---|
| 971 | |
|---|
| 972 | \end_inset |
|---|
| 973 | |
|---|
| 974 | produces very large values that overflow unless arbitrary precision numeric |
|---|
| 975 | representations are used. |
|---|
| 976 | \end_layout |
|---|
| 977 | |
|---|
| 978 | \begin_layout Standard |
|---|
| 979 | Note also that it is not necessary to have very simple PMFs like those of |
|---|
| 980 | the |
|---|
| 981 | \begin_inset Formula $K_{i}$ |
|---|
| 982 | \end_inset |
|---|
| 983 | |
|---|
| 984 | . |
|---|
| 985 | Any share or set of shares that has a known PMF can be combined with any |
|---|
| 986 | other set with a known PMF by convolution, as long as the two share sets |
|---|
| 987 | are independent. |
|---|
| 988 | The reverse holds as well; given a group with an empirically-derived PMF, |
|---|
| 989 | in it's theoretically possible to solve for an individual PMF, and thereby |
|---|
| 990 | determine |
|---|
| 991 | \begin_inset Formula $p_{i}$ |
|---|
| 992 | \end_inset |
|---|
| 993 | |
|---|
| 994 | even when per-share data is unavailable. |
|---|
| 995 | \end_layout |
|---|
| 996 | |
|---|
| 997 | \begin_layout Subsection |
|---|
| 998 | Multiple Failure Modes |
|---|
| 999 | \begin_inset CommandInset label |
|---|
| 1000 | LatexCommand label |
|---|
| 1001 | name "sub:Multiple-Failure-Modes" |
|---|
| 1002 | |
|---|
| 1003 | \end_inset |
|---|
| 1004 | |
|---|
| 1005 | |
|---|
| 1006 | \end_layout |
|---|
| 1007 | |
|---|
| 1008 | \begin_layout Standard |
|---|
| 1009 | In modeling share survival probabilities, it's useful to be able to analyze |
|---|
| 1010 | separately each of the various failure modes. |
|---|
| 1011 | For example, if reliable statistics for disk failure can be obtained, then |
|---|
| 1012 | a probability mass function for that form of failure can be generated. |
|---|
| 1013 | Similarly, statistics on other hardware failures, administrative errors, |
|---|
| 1014 | network losses, etc., can all be estimated independently. |
|---|
| 1015 | If those estimates can then be combined into a single PMF for a share, |
|---|
| 1016 | then we can use it to predict failures for that share. |
|---|
| 1017 | \end_layout |
|---|
| 1018 | |
|---|
| 1019 | \begin_layout Standard |
|---|
| 1020 | Combining independent failure modes for a single share is straightforward. |
|---|
| 1021 | If |
|---|
| 1022 | \begin_inset Formula $p_{i,j}$ |
|---|
| 1023 | \end_inset |
|---|
| 1024 | |
|---|
| 1025 | is the probability of survival of the |
|---|
| 1026 | \begin_inset Formula $j$ |
|---|
| 1027 | \end_inset |
|---|
| 1028 | |
|---|
| 1029 | th failure mode of share |
|---|
| 1030 | \begin_inset Formula $i$ |
|---|
| 1031 | \end_inset |
|---|
| 1032 | |
|---|
| 1033 | , |
|---|
| 1034 | \begin_inset Formula $1\leq j\leq m$ |
|---|
| 1035 | \end_inset |
|---|
| 1036 | |
|---|
| 1037 | , then |
|---|
| 1038 | \begin_inset Formula \[ |
|---|
| 1039 | Pr[K_{i}=k]=f_{i}(k)=\begin{cases} |
|---|
| 1040 | \prod_{j=1}^{m}p_{i,j} & k=1\\ |
|---|
| 1041 | 1-\prod_{j=1}^{m}p_{i,j} & k=0\end{cases}\] |
|---|
| 1042 | |
|---|
| 1043 | \end_inset |
|---|
| 1044 | |
|---|
| 1045 | is the survival PMF. |
|---|
| 1046 | \end_layout |
|---|
| 1047 | |
|---|
| 1048 | \begin_layout Subsection |
|---|
| 1049 | Multi-share failures |
|---|
| 1050 | \begin_inset CommandInset label |
|---|
| 1051 | LatexCommand label |
|---|
| 1052 | name "sub:Multi-share-failures" |
|---|
| 1053 | |
|---|
| 1054 | \end_inset |
|---|
| 1055 | |
|---|
| 1056 | |
|---|
| 1057 | \end_layout |
|---|
| 1058 | |
|---|
| 1059 | \begin_layout Standard |
|---|
| 1060 | If there are failure modes that affect multiple computers, we can also construct |
|---|
| 1061 | the PMF that predicts their survival. |
|---|
| 1062 | The key observation is that the PMF has non-zero probabilities only for |
|---|
| 1063 | |
|---|
| 1064 | \begin_inset Formula $0$ |
|---|
| 1065 | \end_inset |
|---|
| 1066 | |
|---|
| 1067 | survivors and |
|---|
| 1068 | \begin_inset Formula $n$ |
|---|
| 1069 | \end_inset |
|---|
| 1070 | |
|---|
| 1071 | survivors, where |
|---|
| 1072 | \begin_inset Formula $n$ |
|---|
| 1073 | \end_inset |
|---|
| 1074 | |
|---|
| 1075 | is the number of shares in the set. |
|---|
| 1076 | If |
|---|
| 1077 | \begin_inset Formula $p$ |
|---|
| 1078 | \end_inset |
|---|
| 1079 | |
|---|
| 1080 | is the probability of survival, the PMF of |
|---|
| 1081 | \begin_inset Formula $K$ |
|---|
| 1082 | \end_inset |
|---|
| 1083 | |
|---|
| 1084 | , a random variable representing the number of survivors is |
|---|
| 1085 | \begin_inset Formula \[ |
|---|
| 1086 | Pr[K=k]=f(k)=\begin{cases} |
|---|
| 1087 | p & k=n\\ |
|---|
| 1088 | 0 & 0<i<n\\ |
|---|
| 1089 | 1-p & k=0\end{cases}\] |
|---|
| 1090 | |
|---|
| 1091 | \end_inset |
|---|
| 1092 | |
|---|
| 1093 | |
|---|
| 1094 | \end_layout |
|---|
| 1095 | |
|---|
| 1096 | \begin_layout Standard |
|---|
| 1097 | Group failures due to multiple independent causes can be combined as in |
|---|
| 1098 | section |
|---|
| 1099 | \begin_inset CommandInset ref |
|---|
| 1100 | LatexCommand ref |
|---|
| 1101 | reference "sub:Multiple-Failure-Modes" |
|---|
| 1102 | |
|---|
| 1103 | \end_inset |
|---|
| 1104 | |
|---|
| 1105 | , as long as they apply to the whole group. |
|---|
| 1106 | \end_layout |
|---|
| 1107 | |
|---|
| 1108 | \begin_layout Example |
|---|
| 1109 | Putting the Pieces Together |
|---|
| 1110 | \end_layout |
|---|
| 1111 | |
|---|
| 1112 | \begin_layout Standard |
|---|
| 1113 | Sections |
|---|
| 1114 | \begin_inset CommandInset ref |
|---|
| 1115 | LatexCommand ref |
|---|
| 1116 | reference "sub:Fixed-Reliability" |
|---|
| 1117 | |
|---|
| 1118 | \end_inset |
|---|
| 1119 | |
|---|
| 1120 | through |
|---|
| 1121 | \begin_inset CommandInset ref |
|---|
| 1122 | LatexCommand ref |
|---|
| 1123 | reference "sub:Multi-share-failures" |
|---|
| 1124 | |
|---|
| 1125 | \end_inset |
|---|
| 1126 | |
|---|
| 1127 | provide ways of calculating the survival probability mass functions for |
|---|
| 1128 | a variety of share failure structures and modes. |
|---|
| 1129 | As an example of how these pieces can be used, consider a network with |
|---|
| 1130 | the following peers: |
|---|
| 1131 | \end_layout |
|---|
| 1132 | |
|---|
| 1133 | \begin_layout Itemize |
|---|
| 1134 | Four servers located in a data center in Nebraska. |
|---|
| 1135 | The machines have multiply-redundant Internet connections, with a failure |
|---|
| 1136 | probability of 0.0001. |
|---|
| 1137 | They store their shares on RAID arrays with failure probability of 0.0002. |
|---|
| 1138 | The administrative staff makes data-destroying errors with probability |
|---|
| 1139 | 0.003. |
|---|
| 1140 | \end_layout |
|---|
| 1141 | |
|---|
| 1142 | \begin_layout Itemize |
|---|
| 1143 | Four servers located in a data center on the island of Hawaii. |
|---|
| 1144 | These servers have identical failure probabilities as the servers in Nebraska, |
|---|
| 1145 | except that the data center is near the edge of the crater on Mount Kilauea |
|---|
| 1146 | (nobody said examples had to be realistic). |
|---|
| 1147 | There is a 0.04 chance that the volcano will erupt and bury the data center |
|---|
| 1148 | in molten lava, destroying it entirely. |
|---|
| 1149 | \end_layout |
|---|
| 1150 | |
|---|
| 1151 | \begin_layout Itemize |
|---|
| 1152 | Four PCs located in random homes, connected to the Internet via assorted |
|---|
| 1153 | cable modems and DSL. |
|---|
| 1154 | Their network connections fail with probability 0.009. |
|---|
| 1155 | Their disks fail with probability 0.001. |
|---|
| 1156 | Their users destroy data with probability 0.05. |
|---|
| 1157 | \end_layout |
|---|
| 1158 | |
|---|
| 1159 | \begin_layout Standard |
|---|
| 1160 | If one share is placed on each of these 12 computers, what's the probability |
|---|
| 1161 | mass function of share survival? To more compactly describe PMFs, we'll |
|---|
| 1162 | denote them as probability vectors of the form |
|---|
| 1163 | \begin_inset Formula $\left[\alpha_{o},\alpha_{1},\alpha_{2},\ldots\alpha_{n}\right]$ |
|---|
| 1164 | \end_inset |
|---|
| 1165 | |
|---|
| 1166 | where |
|---|
| 1167 | \begin_inset Formula $\alpha_{i}$ |
|---|
| 1168 | \end_inset |
|---|
| 1169 | |
|---|
| 1170 | is the probability that exactly |
|---|
| 1171 | \begin_inset Formula $i$ |
|---|
| 1172 | \end_inset |
|---|
| 1173 | |
|---|
| 1174 | shares survive. |
|---|
| 1175 | \end_layout |
|---|
| 1176 | |
|---|
| 1177 | \begin_layout Standard |
|---|
| 1178 | The servers in the two data centers have individual failure probabilities |
|---|
| 1179 | of RAID failure (.0002) and administrative error (.003) giving an individual |
|---|
| 1180 | survival probability of |
|---|
| 1181 | \begin_inset Formula \[ |
|---|
| 1182 | (1-.0002)\cdot(1-.003)=.9998\cdot.997=.9968\] |
|---|
| 1183 | |
|---|
| 1184 | \end_inset |
|---|
| 1185 | |
|---|
| 1186 | |
|---|
| 1187 | \end_layout |
|---|
| 1188 | |
|---|
| 1189 | \begin_layout Standard |
|---|
| 1190 | Using |
|---|
| 1191 | \begin_inset Formula $p=.9968,n=4$ |
|---|
| 1192 | \end_inset |
|---|
| 1193 | |
|---|
| 1194 | in equation |
|---|
| 1195 | \begin_inset CommandInset ref |
|---|
| 1196 | LatexCommand ref |
|---|
| 1197 | reference "eq:binomial-pmf" |
|---|
| 1198 | |
|---|
| 1199 | \end_inset |
|---|
| 1200 | |
|---|
| 1201 | gives the survival PMF |
|---|
| 1202 | \begin_inset Formula \[ |
|---|
| 1203 | \left[1.049\times10^{-10},1.307\times10^{-7},6.105\times10^{-5},0.01271,0.9872\right]\] |
|---|
| 1204 | |
|---|
| 1205 | \end_inset |
|---|
| 1206 | |
|---|
| 1207 | which applies to each group of four servers. |
|---|
| 1208 | However, each data center also has a .0001 chance of data connection loss, |
|---|
| 1209 | which affects all four servers at once, and Hawaii has the additional .04 |
|---|
| 1210 | probability of severe lava burn. |
|---|
| 1211 | If the network fails at a location, all the machines go offline together. |
|---|
| 1212 | The probability that 0 machines survive is the probability that they all |
|---|
| 1213 | fail for individual reasons ( |
|---|
| 1214 | \begin_inset Formula $1.049\cdot10^{-10}$ |
|---|
| 1215 | \end_inset |
|---|
| 1216 | |
|---|
| 1217 | ) plus the probability they all fail because of a network outage ( |
|---|
| 1218 | \begin_inset Formula $.0001$ |
|---|
| 1219 | \end_inset |
|---|
| 1220 | |
|---|
| 1221 | ) less the probability they fail for both reasons: |
|---|
| 1222 | \begin_inset Formula \[ |
|---|
| 1223 | \left(1.049\times10^{-10}\right)+\left(0.0001\right)-\left[\left(1.049\times10^{-10}\right)\cdot\left(0.0001\right)\right]\approxeq0.0001\] |
|---|
| 1224 | |
|---|
| 1225 | \end_inset |
|---|
| 1226 | |
|---|
| 1227 | |
|---|
| 1228 | \end_layout |
|---|
| 1229 | |
|---|
| 1230 | \begin_layout Standard |
|---|
| 1231 | That's the |
|---|
| 1232 | \begin_inset Formula $i=0$ |
|---|
| 1233 | \end_inset |
|---|
| 1234 | |
|---|
| 1235 | element of the combined PMF. |
|---|
| 1236 | The combined probability of survival of |
|---|
| 1237 | \begin_inset Formula $0<i\leq4$ |
|---|
| 1238 | \end_inset |
|---|
| 1239 | |
|---|
| 1240 | servers is simpler: it's the probability they survive individual failure, |
|---|
| 1241 | from the individual failure PMF above, times the probability they survive |
|---|
| 1242 | network failure (.9999). |
|---|
| 1243 | So the combined survival PMF, which we'll denote as |
|---|
| 1244 | \begin_inset Formula $n(i)$ |
|---|
| 1245 | \end_inset |
|---|
| 1246 | |
|---|
| 1247 | of the Nebraska servers is |
|---|
| 1248 | \begin_inset Formula \[ |
|---|
| 1249 | n(i)=\left[0.0001,1.306\times10^{-7},6.104\times10^{-5},0.01268,0.9872\right]\] |
|---|
| 1250 | |
|---|
| 1251 | \end_inset |
|---|
| 1252 | |
|---|
| 1253 | which has the interesting property that complete failure is 1000 times more |
|---|
| 1254 | likely than survival of one server. |
|---|
| 1255 | This is because the probability of a network outage is so much greater |
|---|
| 1256 | than simultaneous |
|---|
| 1257 | \begin_inset Foot |
|---|
| 1258 | status collapsed |
|---|
| 1259 | |
|---|
| 1260 | \begin_layout Plain Layout |
|---|
| 1261 | Of course, the failures need not be truly simultaneous, they just have happen |
|---|
| 1262 | in the same interval between repair runs. |
|---|
| 1263 | \end_layout |
|---|
| 1264 | |
|---|
| 1265 | \end_inset |
|---|
| 1266 | |
|---|
| 1267 | independent failure of three servers. |
|---|
| 1268 | \end_layout |
|---|
| 1269 | |
|---|
| 1270 | \begin_layout Standard |
|---|
| 1271 | We apply the same process for the Hawaii servers, but with group survival |
|---|
| 1272 | probability of |
|---|
| 1273 | \begin_inset Formula $(1-.0001)(1-.04)=.9799$ |
|---|
| 1274 | \end_inset |
|---|
| 1275 | |
|---|
| 1276 | gives the survival PMF |
|---|
| 1277 | \begin_inset Formula \[ |
|---|
| 1278 | h(i)=\left[0.0201,1.280\times10^{-7},5.982\times10^{-5},0.01242,0.9674\right]\] |
|---|
| 1279 | |
|---|
| 1280 | \end_inset |
|---|
| 1281 | |
|---|
| 1282 | |
|---|
| 1283 | \end_layout |
|---|
| 1284 | |
|---|
| 1285 | \begin_layout Standard |
|---|
| 1286 | Applying the convolution operator to |
|---|
| 1287 | \begin_inset Formula $n(i)$ |
|---|
| 1288 | \end_inset |
|---|
| 1289 | |
|---|
| 1290 | and |
|---|
| 1291 | \begin_inset Formula $h(i)$ |
|---|
| 1292 | \end_inset |
|---|
| 1293 | |
|---|
| 1294 | , the survival PMF of all eight servers is: |
|---|
| 1295 | \end_layout |
|---|
| 1296 | |
|---|
| 1297 | \begin_layout Standard |
|---|
| 1298 | \begin_inset Formula \[ |
|---|
| 1299 | \left(n\star h\right)\left(i\right)=\begin{cases} |
|---|
| 1300 | 2.010\times10^{-6} & i=0\\ |
|---|
| 1301 | 2.639\times10^{-9} & i=1\\ |
|---|
| 1302 | 1.233\times10^{-6} & i=2\\ |
|---|
| 1303 | 2.560\times10^{-4} & i=3\\ |
|---|
| 1304 | 0.01994 & i=4\\ |
|---|
| 1305 | 1.769\times10^{-6} & i=5\\ |
|---|
| 1306 | 2.756\times10^{-4} & i=6\\ |
|---|
| 1307 | 0.02452 & i=7\\ |
|---|
| 1308 | 0.9559 & i=8\end{cases}\] |
|---|
| 1309 | |
|---|
| 1310 | \end_inset |
|---|
| 1311 | |
|---|
| 1312 | |
|---|
| 1313 | \end_layout |
|---|
| 1314 | |
|---|
| 1315 | \begin_layout Standard |
|---|
| 1316 | \begin_inset VSpace defskip |
|---|
| 1317 | \end_inset |
|---|
| 1318 | |
|---|
| 1319 | |
|---|
| 1320 | \end_layout |
|---|
| 1321 | |
|---|
| 1322 | \begin_layout Standard |
|---|
| 1323 | Note that losing four shares ( |
|---|
| 1324 | \begin_inset Formula $i=4$ |
|---|
| 1325 | \end_inset |
|---|
| 1326 | |
|---|
| 1327 | ) is 10,000 times more likely than losing three ( |
|---|
| 1328 | \begin_inset Formula $i=5$ |
|---|
| 1329 | \end_inset |
|---|
| 1330 | |
|---|
| 1331 | ). |
|---|
| 1332 | This is because both data centers have a whole-center failure mode, and |
|---|
| 1333 | the Hawaii center's lava burn probability is so high. |
|---|
| 1334 | Similarly, the probability of losing all of them is 1000 times higher than |
|---|
| 1335 | the probability of losing all but one. |
|---|
| 1336 | \end_layout |
|---|
| 1337 | |
|---|
| 1338 | \begin_layout Standard |
|---|
| 1339 | For the home PCs, their individual probability of survival is |
|---|
| 1340 | \begin_inset Formula \[ |
|---|
| 1341 | (1-.009)\cdot(1-.001)\cdot(1-.05)=.991\cdot.999\cdot.95=.9405\] |
|---|
| 1342 | |
|---|
| 1343 | \end_inset |
|---|
| 1344 | |
|---|
| 1345 | |
|---|
| 1346 | \end_layout |
|---|
| 1347 | |
|---|
| 1348 | \begin_layout Standard |
|---|
| 1349 | We can then apply equation |
|---|
| 1350 | \begin_inset CommandInset ref |
|---|
| 1351 | LatexCommand ref |
|---|
| 1352 | reference "eq:binomial-pmf" |
|---|
| 1353 | |
|---|
| 1354 | \end_inset |
|---|
| 1355 | |
|---|
| 1356 | with |
|---|
| 1357 | \begin_inset Formula $N=4$ |
|---|
| 1358 | \end_inset |
|---|
| 1359 | |
|---|
| 1360 | and |
|---|
| 1361 | \begin_inset Formula $p=.9405$ |
|---|
| 1362 | \end_inset |
|---|
| 1363 | |
|---|
| 1364 | to compute the PMF |
|---|
| 1365 | \begin_inset Formula $g(i),0\leq i\leq4$ |
|---|
| 1366 | \end_inset |
|---|
| 1367 | |
|---|
| 1368 | for the PCs and finally compute |
|---|
| 1369 | \begin_inset Formula $f(i)=\left(g\star\left(n\star h\right)\right)\left(i\right)$ |
|---|
| 1370 | \end_inset |
|---|
| 1371 | |
|---|
| 1372 | , the PMF of the whole share set. |
|---|
| 1373 | Summing the values of |
|---|
| 1374 | \begin_inset Formula $f(i)$ |
|---|
| 1375 | \end_inset |
|---|
| 1376 | |
|---|
| 1377 | for |
|---|
| 1378 | \begin_inset Formula $0\leq i\leq k-1$ |
|---|
| 1379 | \end_inset |
|---|
| 1380 | |
|---|
| 1381 | gives the probability that less than |
|---|
| 1382 | \begin_inset Formula $k$ |
|---|
| 1383 | \end_inset |
|---|
| 1384 | |
|---|
| 1385 | shares survive and the file is unrecoverable. |
|---|
| 1386 | For this example, those sums are shown in table |
|---|
| 1387 | \begin_inset CommandInset ref |
|---|
| 1388 | LatexCommand vref |
|---|
| 1389 | reference "tab:Example-PMF" |
|---|
| 1390 | |
|---|
| 1391 | \end_inset |
|---|
| 1392 | |
|---|
| 1393 | . |
|---|
| 1394 | \begin_inset Float table |
|---|
| 1395 | wide false |
|---|
| 1396 | sideways false |
|---|
| 1397 | status collapsed |
|---|
| 1398 | |
|---|
| 1399 | \begin_layout Plain Layout |
|---|
| 1400 | \align center |
|---|
| 1401 | \begin_inset Tabular |
|---|
| 1402 | <lyxtabular version="3" rows="13" columns="4"> |
|---|
| 1403 | <features> |
|---|
| 1404 | <column alignment="center" valignment="top" width="0"> |
|---|
| 1405 | <column alignment="center" valignment="top" width="0"> |
|---|
| 1406 | <column alignment="center" valignment="top" width="0"> |
|---|
| 1407 | <column alignment="center" valignment="top" width="0"> |
|---|
| 1408 | <row> |
|---|
| 1409 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> |
|---|
| 1410 | \begin_inset Text |
|---|
| 1411 | |
|---|
| 1412 | \begin_layout Plain Layout |
|---|
| 1413 | \begin_inset Formula $k$ |
|---|
| 1414 | \end_inset |
|---|
| 1415 | |
|---|
| 1416 | |
|---|
| 1417 | \end_layout |
|---|
| 1418 | |
|---|
| 1419 | \end_inset |
|---|
| 1420 | </cell> |
|---|
| 1421 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> |
|---|
| 1422 | \begin_inset Text |
|---|
| 1423 | |
|---|
| 1424 | \begin_layout Plain Layout |
|---|
| 1425 | \begin_inset Formula $Pr[K=k]$ |
|---|
| 1426 | \end_inset |
|---|
| 1427 | |
|---|
| 1428 | |
|---|
| 1429 | \end_layout |
|---|
| 1430 | |
|---|
| 1431 | \end_inset |
|---|
| 1432 | </cell> |
|---|
| 1433 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> |
|---|
| 1434 | \begin_inset Text |
|---|
| 1435 | |
|---|
| 1436 | \begin_layout Plain Layout |
|---|
| 1437 | \begin_inset Formula $Pr[file\, loss]=Pr[K<k]$ |
|---|
| 1438 | \end_inset |
|---|
| 1439 | |
|---|
| 1440 | |
|---|
| 1441 | \end_layout |
|---|
| 1442 | |
|---|
| 1443 | \end_inset |
|---|
| 1444 | </cell> |
|---|
| 1445 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1446 | \begin_inset Text |
|---|
| 1447 | |
|---|
| 1448 | \begin_layout Plain Layout |
|---|
| 1449 | \begin_inset Formula $N/k$ |
|---|
| 1450 | \end_inset |
|---|
| 1451 | |
|---|
| 1452 | |
|---|
| 1453 | \end_layout |
|---|
| 1454 | |
|---|
| 1455 | \end_inset |
|---|
| 1456 | </cell> |
|---|
| 1457 | </row> |
|---|
| 1458 | <row> |
|---|
| 1459 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1460 | \begin_inset Text |
|---|
| 1461 | |
|---|
| 1462 | \begin_layout Plain Layout |
|---|
| 1463 | 1 |
|---|
| 1464 | \end_layout |
|---|
| 1465 | |
|---|
| 1466 | \end_inset |
|---|
| 1467 | </cell> |
|---|
| 1468 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1469 | \begin_inset Text |
|---|
| 1470 | |
|---|
| 1471 | \begin_layout Plain Layout |
|---|
| 1472 | \begin_inset Formula $1.60\times10^{-9}$ |
|---|
| 1473 | \end_inset |
|---|
| 1474 | |
|---|
| 1475 | |
|---|
| 1476 | \end_layout |
|---|
| 1477 | |
|---|
| 1478 | \end_inset |
|---|
| 1479 | </cell> |
|---|
| 1480 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1481 | \begin_inset Text |
|---|
| 1482 | |
|---|
| 1483 | \begin_layout Plain Layout |
|---|
| 1484 | \begin_inset Formula $2.53\times10^{-11}$ |
|---|
| 1485 | \end_inset |
|---|
| 1486 | |
|---|
| 1487 | |
|---|
| 1488 | \end_layout |
|---|
| 1489 | |
|---|
| 1490 | \end_inset |
|---|
| 1491 | </cell> |
|---|
| 1492 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1493 | \begin_inset Text |
|---|
| 1494 | |
|---|
| 1495 | \begin_layout Plain Layout |
|---|
| 1496 | 12 |
|---|
| 1497 | \end_layout |
|---|
| 1498 | |
|---|
| 1499 | \end_inset |
|---|
| 1500 | </cell> |
|---|
| 1501 | </row> |
|---|
| 1502 | <row> |
|---|
| 1503 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1504 | \begin_inset Text |
|---|
| 1505 | |
|---|
| 1506 | \begin_layout Plain Layout |
|---|
| 1507 | 2 |
|---|
| 1508 | \end_layout |
|---|
| 1509 | |
|---|
| 1510 | \end_inset |
|---|
| 1511 | </cell> |
|---|
| 1512 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1513 | \begin_inset Text |
|---|
| 1514 | |
|---|
| 1515 | \begin_layout Plain Layout |
|---|
| 1516 | \begin_inset Formula $3.80\times10^{-8}$ |
|---|
| 1517 | \end_inset |
|---|
| 1518 | |
|---|
| 1519 | |
|---|
| 1520 | \end_layout |
|---|
| 1521 | |
|---|
| 1522 | \end_inset |
|---|
| 1523 | </cell> |
|---|
| 1524 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1525 | \begin_inset Text |
|---|
| 1526 | |
|---|
| 1527 | \begin_layout Plain Layout |
|---|
| 1528 | \begin_inset Formula $1.63\times10^{-9}$ |
|---|
| 1529 | \end_inset |
|---|
| 1530 | |
|---|
| 1531 | |
|---|
| 1532 | \end_layout |
|---|
| 1533 | |
|---|
| 1534 | \end_inset |
|---|
| 1535 | </cell> |
|---|
| 1536 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1537 | \begin_inset Text |
|---|
| 1538 | |
|---|
| 1539 | \begin_layout Plain Layout |
|---|
| 1540 | 6 |
|---|
| 1541 | \end_layout |
|---|
| 1542 | |
|---|
| 1543 | \end_inset |
|---|
| 1544 | </cell> |
|---|
| 1545 | </row> |
|---|
| 1546 | <row> |
|---|
| 1547 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1548 | \begin_inset Text |
|---|
| 1549 | |
|---|
| 1550 | \begin_layout Plain Layout |
|---|
| 1551 | 3 |
|---|
| 1552 | \end_layout |
|---|
| 1553 | |
|---|
| 1554 | \end_inset |
|---|
| 1555 | </cell> |
|---|
| 1556 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1557 | \begin_inset Text |
|---|
| 1558 | |
|---|
| 1559 | \begin_layout Plain Layout |
|---|
| 1560 | \begin_inset Formula $4.04\times10^{-7}$ |
|---|
| 1561 | \end_inset |
|---|
| 1562 | |
|---|
| 1563 | |
|---|
| 1564 | \end_layout |
|---|
| 1565 | |
|---|
| 1566 | \end_inset |
|---|
| 1567 | </cell> |
|---|
| 1568 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1569 | \begin_inset Text |
|---|
| 1570 | |
|---|
| 1571 | \begin_layout Plain Layout |
|---|
| 1572 | \begin_inset Formula $3.70\times10^{-8}$ |
|---|
| 1573 | \end_inset |
|---|
| 1574 | |
|---|
| 1575 | |
|---|
| 1576 | \end_layout |
|---|
| 1577 | |
|---|
| 1578 | \end_inset |
|---|
| 1579 | </cell> |
|---|
| 1580 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1581 | \begin_inset Text |
|---|
| 1582 | |
|---|
| 1583 | \begin_layout Plain Layout |
|---|
| 1584 | 4 |
|---|
| 1585 | \end_layout |
|---|
| 1586 | |
|---|
| 1587 | \end_inset |
|---|
| 1588 | </cell> |
|---|
| 1589 | </row> |
|---|
| 1590 | <row> |
|---|
| 1591 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1592 | \begin_inset Text |
|---|
| 1593 | |
|---|
| 1594 | \begin_layout Plain Layout |
|---|
| 1595 | 4 |
|---|
| 1596 | \end_layout |
|---|
| 1597 | |
|---|
| 1598 | \end_inset |
|---|
| 1599 | </cell> |
|---|
| 1600 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1601 | \begin_inset Text |
|---|
| 1602 | |
|---|
| 1603 | \begin_layout Plain Layout |
|---|
| 1604 | \begin_inset Formula $2.06\times10^{-6}$ |
|---|
| 1605 | \end_inset |
|---|
| 1606 | |
|---|
| 1607 | |
|---|
| 1608 | \end_layout |
|---|
| 1609 | |
|---|
| 1610 | \end_inset |
|---|
| 1611 | </cell> |
|---|
| 1612 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1613 | \begin_inset Text |
|---|
| 1614 | |
|---|
| 1615 | \begin_layout Plain Layout |
|---|
| 1616 | \begin_inset Formula $4.44\times10^{-7}$ |
|---|
| 1617 | \end_inset |
|---|
| 1618 | |
|---|
| 1619 | |
|---|
| 1620 | \end_layout |
|---|
| 1621 | |
|---|
| 1622 | \end_inset |
|---|
| 1623 | </cell> |
|---|
| 1624 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1625 | \begin_inset Text |
|---|
| 1626 | |
|---|
| 1627 | \begin_layout Plain Layout |
|---|
| 1628 | 3 |
|---|
| 1629 | \end_layout |
|---|
| 1630 | |
|---|
| 1631 | \end_inset |
|---|
| 1632 | </cell> |
|---|
| 1633 | </row> |
|---|
| 1634 | <row> |
|---|
| 1635 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1636 | \begin_inset Text |
|---|
| 1637 | |
|---|
| 1638 | \begin_layout Plain Layout |
|---|
| 1639 | 5 |
|---|
| 1640 | \end_layout |
|---|
| 1641 | |
|---|
| 1642 | \end_inset |
|---|
| 1643 | </cell> |
|---|
| 1644 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1645 | \begin_inset Text |
|---|
| 1646 | |
|---|
| 1647 | \begin_layout Plain Layout |
|---|
| 1648 | \begin_inset Formula $2.10\times10^{-5}$ |
|---|
| 1649 | \end_inset |
|---|
| 1650 | |
|---|
| 1651 | |
|---|
| 1652 | \end_layout |
|---|
| 1653 | |
|---|
| 1654 | \end_inset |
|---|
| 1655 | </cell> |
|---|
| 1656 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1657 | \begin_inset Text |
|---|
| 1658 | |
|---|
| 1659 | \begin_layout Plain Layout |
|---|
| 1660 | \begin_inset Formula $2.50\times10^{-6}$ |
|---|
| 1661 | \end_inset |
|---|
| 1662 | |
|---|
| 1663 | |
|---|
| 1664 | \end_layout |
|---|
| 1665 | |
|---|
| 1666 | \end_inset |
|---|
| 1667 | </cell> |
|---|
| 1668 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1669 | \begin_inset Text |
|---|
| 1670 | |
|---|
| 1671 | \begin_layout Plain Layout |
|---|
| 1672 | 2.4 |
|---|
| 1673 | \end_layout |
|---|
| 1674 | |
|---|
| 1675 | \end_inset |
|---|
| 1676 | </cell> |
|---|
| 1677 | </row> |
|---|
| 1678 | <row> |
|---|
| 1679 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1680 | \begin_inset Text |
|---|
| 1681 | |
|---|
| 1682 | \begin_layout Plain Layout |
|---|
| 1683 | 6 |
|---|
| 1684 | \end_layout |
|---|
| 1685 | |
|---|
| 1686 | \end_inset |
|---|
| 1687 | </cell> |
|---|
| 1688 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1689 | \begin_inset Text |
|---|
| 1690 | |
|---|
| 1691 | \begin_layout Plain Layout |
|---|
| 1692 | \begin_inset Formula $0.000428$ |
|---|
| 1693 | \end_inset |
|---|
| 1694 | |
|---|
| 1695 | |
|---|
| 1696 | \end_layout |
|---|
| 1697 | |
|---|
| 1698 | \end_inset |
|---|
| 1699 | </cell> |
|---|
| 1700 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1701 | \begin_inset Text |
|---|
| 1702 | |
|---|
| 1703 | \begin_layout Plain Layout |
|---|
| 1704 | \begin_inset Formula $2.35\times10^{-5}$ |
|---|
| 1705 | \end_inset |
|---|
| 1706 | |
|---|
| 1707 | |
|---|
| 1708 | \end_layout |
|---|
| 1709 | |
|---|
| 1710 | \end_inset |
|---|
| 1711 | </cell> |
|---|
| 1712 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1713 | \begin_inset Text |
|---|
| 1714 | |
|---|
| 1715 | \begin_layout Plain Layout |
|---|
| 1716 | 2 |
|---|
| 1717 | \end_layout |
|---|
| 1718 | |
|---|
| 1719 | \end_inset |
|---|
| 1720 | </cell> |
|---|
| 1721 | </row> |
|---|
| 1722 | <row> |
|---|
| 1723 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1724 | \begin_inset Text |
|---|
| 1725 | |
|---|
| 1726 | \begin_layout Plain Layout |
|---|
| 1727 | 7 |
|---|
| 1728 | \end_layout |
|---|
| 1729 | |
|---|
| 1730 | \end_inset |
|---|
| 1731 | </cell> |
|---|
| 1732 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1733 | \begin_inset Text |
|---|
| 1734 | |
|---|
| 1735 | \begin_layout Plain Layout |
|---|
| 1736 | \begin_inset Formula $0.00417$ |
|---|
| 1737 | \end_inset |
|---|
| 1738 | |
|---|
| 1739 | |
|---|
| 1740 | \end_layout |
|---|
| 1741 | |
|---|
| 1742 | \end_inset |
|---|
| 1743 | </cell> |
|---|
| 1744 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1745 | \begin_inset Text |
|---|
| 1746 | |
|---|
| 1747 | \begin_layout Plain Layout |
|---|
| 1748 | \begin_inset Formula $0.000452$ |
|---|
| 1749 | \end_inset |
|---|
| 1750 | |
|---|
| 1751 | |
|---|
| 1752 | \end_layout |
|---|
| 1753 | |
|---|
| 1754 | \end_inset |
|---|
| 1755 | </cell> |
|---|
| 1756 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1757 | \begin_inset Text |
|---|
| 1758 | |
|---|
| 1759 | \begin_layout Plain Layout |
|---|
| 1760 | 1.7 |
|---|
| 1761 | \end_layout |
|---|
| 1762 | |
|---|
| 1763 | \end_inset |
|---|
| 1764 | </cell> |
|---|
| 1765 | </row> |
|---|
| 1766 | <row> |
|---|
| 1767 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1768 | \begin_inset Text |
|---|
| 1769 | |
|---|
| 1770 | \begin_layout Plain Layout |
|---|
| 1771 | 8 |
|---|
| 1772 | \end_layout |
|---|
| 1773 | |
|---|
| 1774 | \end_inset |
|---|
| 1775 | </cell> |
|---|
| 1776 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1777 | \begin_inset Text |
|---|
| 1778 | |
|---|
| 1779 | \begin_layout Plain Layout |
|---|
| 1780 | \begin_inset Formula $0.0157$ |
|---|
| 1781 | \end_inset |
|---|
| 1782 | |
|---|
| 1783 | |
|---|
| 1784 | \end_layout |
|---|
| 1785 | |
|---|
| 1786 | \end_inset |
|---|
| 1787 | </cell> |
|---|
| 1788 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1789 | \begin_inset Text |
|---|
| 1790 | |
|---|
| 1791 | \begin_layout Plain Layout |
|---|
| 1792 | \begin_inset Formula $0.00462$ |
|---|
| 1793 | \end_inset |
|---|
| 1794 | |
|---|
| 1795 | |
|---|
| 1796 | \end_layout |
|---|
| 1797 | |
|---|
| 1798 | \end_inset |
|---|
| 1799 | </cell> |
|---|
| 1800 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1801 | \begin_inset Text |
|---|
| 1802 | |
|---|
| 1803 | \begin_layout Plain Layout |
|---|
| 1804 | 1.5 |
|---|
| 1805 | \end_layout |
|---|
| 1806 | |
|---|
| 1807 | \end_inset |
|---|
| 1808 | </cell> |
|---|
| 1809 | </row> |
|---|
| 1810 | <row> |
|---|
| 1811 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1812 | \begin_inset Text |
|---|
| 1813 | |
|---|
| 1814 | \begin_layout Plain Layout |
|---|
| 1815 | 9 |
|---|
| 1816 | \end_layout |
|---|
| 1817 | |
|---|
| 1818 | \end_inset |
|---|
| 1819 | </cell> |
|---|
| 1820 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1821 | \begin_inset Text |
|---|
| 1822 | |
|---|
| 1823 | \begin_layout Plain Layout |
|---|
| 1824 | \begin_inset Formula $0.00127$ |
|---|
| 1825 | \end_inset |
|---|
| 1826 | |
|---|
| 1827 | |
|---|
| 1828 | \end_layout |
|---|
| 1829 | |
|---|
| 1830 | \end_inset |
|---|
| 1831 | </cell> |
|---|
| 1832 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1833 | \begin_inset Text |
|---|
| 1834 | |
|---|
| 1835 | \begin_layout Plain Layout |
|---|
| 1836 | \begin_inset Formula $0.0203$ |
|---|
| 1837 | \end_inset |
|---|
| 1838 | |
|---|
| 1839 | |
|---|
| 1840 | \end_layout |
|---|
| 1841 | |
|---|
| 1842 | \end_inset |
|---|
| 1843 | </cell> |
|---|
| 1844 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1845 | \begin_inset Text |
|---|
| 1846 | |
|---|
| 1847 | \begin_layout Plain Layout |
|---|
| 1848 | 1.3 |
|---|
| 1849 | \end_layout |
|---|
| 1850 | |
|---|
| 1851 | \end_inset |
|---|
| 1852 | </cell> |
|---|
| 1853 | </row> |
|---|
| 1854 | <row> |
|---|
| 1855 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1856 | \begin_inset Text |
|---|
| 1857 | |
|---|
| 1858 | \begin_layout Plain Layout |
|---|
| 1859 | 10 |
|---|
| 1860 | \end_layout |
|---|
| 1861 | |
|---|
| 1862 | \end_inset |
|---|
| 1863 | </cell> |
|---|
| 1864 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1865 | \begin_inset Text |
|---|
| 1866 | |
|---|
| 1867 | \begin_layout Plain Layout |
|---|
| 1868 | \begin_inset Formula $0.0230$ |
|---|
| 1869 | \end_inset |
|---|
| 1870 | |
|---|
| 1871 | |
|---|
| 1872 | \end_layout |
|---|
| 1873 | |
|---|
| 1874 | \end_inset |
|---|
| 1875 | </cell> |
|---|
| 1876 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1877 | \begin_inset Text |
|---|
| 1878 | |
|---|
| 1879 | \begin_layout Plain Layout |
|---|
| 1880 | \begin_inset Formula $0.0216$ |
|---|
| 1881 | \end_inset |
|---|
| 1882 | |
|---|
| 1883 | |
|---|
| 1884 | \end_layout |
|---|
| 1885 | |
|---|
| 1886 | \end_inset |
|---|
| 1887 | </cell> |
|---|
| 1888 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1889 | \begin_inset Text |
|---|
| 1890 | |
|---|
| 1891 | \begin_layout Plain Layout |
|---|
| 1892 | 1.2 |
|---|
| 1893 | \end_layout |
|---|
| 1894 | |
|---|
| 1895 | \end_inset |
|---|
| 1896 | </cell> |
|---|
| 1897 | </row> |
|---|
| 1898 | <row> |
|---|
| 1899 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1900 | \begin_inset Text |
|---|
| 1901 | |
|---|
| 1902 | \begin_layout Plain Layout |
|---|
| 1903 | 11 |
|---|
| 1904 | \end_layout |
|---|
| 1905 | |
|---|
| 1906 | \end_inset |
|---|
| 1907 | </cell> |
|---|
| 1908 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1909 | \begin_inset Text |
|---|
| 1910 | |
|---|
| 1911 | \begin_layout Plain Layout |
|---|
| 1912 | \begin_inset Formula $0.208$ |
|---|
| 1913 | \end_inset |
|---|
| 1914 | |
|---|
| 1915 | |
|---|
| 1916 | \end_layout |
|---|
| 1917 | |
|---|
| 1918 | \end_inset |
|---|
| 1919 | </cell> |
|---|
| 1920 | <cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> |
|---|
| 1921 | \begin_inset Text |
|---|
| 1922 | |
|---|
| 1923 | \begin_layout Plain Layout |
|---|
| 1924 | \begin_inset Formula $0.0446$ |
|---|
| 1925 | \end_inset |
|---|
| 1926 | |
|---|
| 1927 | |
|---|
| 1928 | \end_layout |
|---|
| 1929 | |
|---|
| 1930 | \end_inset |
|---|
| 1931 | </cell> |
|---|
| 1932 | <cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1933 | \begin_inset Text |
|---|
| 1934 | |
|---|
| 1935 | \begin_layout Plain Layout |
|---|
| 1936 | 1.1 |
|---|
| 1937 | \end_layout |
|---|
| 1938 | |
|---|
| 1939 | \end_inset |
|---|
| 1940 | </cell> |
|---|
| 1941 | </row> |
|---|
| 1942 | <row> |
|---|
| 1943 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> |
|---|
| 1944 | \begin_inset Text |
|---|
| 1945 | |
|---|
| 1946 | \begin_layout Plain Layout |
|---|
| 1947 | 12 |
|---|
| 1948 | \end_layout |
|---|
| 1949 | |
|---|
| 1950 | \end_inset |
|---|
| 1951 | </cell> |
|---|
| 1952 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> |
|---|
| 1953 | \begin_inset Text |
|---|
| 1954 | |
|---|
| 1955 | \begin_layout Plain Layout |
|---|
| 1956 | \begin_inset Formula $0.747$ |
|---|
| 1957 | \end_inset |
|---|
| 1958 | |
|---|
| 1959 | |
|---|
| 1960 | \end_layout |
|---|
| 1961 | |
|---|
| 1962 | \end_inset |
|---|
| 1963 | </cell> |
|---|
| 1964 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> |
|---|
| 1965 | \begin_inset Text |
|---|
| 1966 | |
|---|
| 1967 | \begin_layout Plain Layout |
|---|
| 1968 | \begin_inset Formula $0.253$ |
|---|
| 1969 | \end_inset |
|---|
| 1970 | |
|---|
| 1971 | |
|---|
| 1972 | \end_layout |
|---|
| 1973 | |
|---|
| 1974 | \end_inset |
|---|
| 1975 | </cell> |
|---|
| 1976 | <cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> |
|---|
| 1977 | \begin_inset Text |
|---|
| 1978 | |
|---|
| 1979 | \begin_layout Plain Layout |
|---|
| 1980 | 1 |
|---|
| 1981 | \end_layout |
|---|
| 1982 | |
|---|
| 1983 | \end_inset |
|---|
| 1984 | </cell> |
|---|
| 1985 | </row> |
|---|
| 1986 | </lyxtabular> |
|---|
| 1987 | |
|---|
| 1988 | \end_inset |
|---|
| 1989 | |
|---|
| 1990 | |
|---|
| 1991 | \end_layout |
|---|
| 1992 | |
|---|
| 1993 | \begin_layout Plain Layout |
|---|
| 1994 | \begin_inset Caption |
|---|
| 1995 | |
|---|
| 1996 | \begin_layout Plain Layout |
|---|
| 1997 | \align left |
|---|
| 1998 | \begin_inset CommandInset label |
|---|
| 1999 | LatexCommand label |
|---|
| 2000 | name "tab:Example-PMF" |
|---|
| 2001 | |
|---|
| 2002 | \end_inset |
|---|
| 2003 | |
|---|
| 2004 | Example PMF |
|---|
| 2005 | \end_layout |
|---|
| 2006 | |
|---|
| 2007 | \end_inset |
|---|
| 2008 | |
|---|
| 2009 | |
|---|
| 2010 | \end_layout |
|---|
| 2011 | |
|---|
| 2012 | \begin_layout Plain Layout |
|---|
| 2013 | |
|---|
| 2014 | \end_layout |
|---|
| 2015 | |
|---|
| 2016 | \end_inset |
|---|
| 2017 | |
|---|
| 2018 | |
|---|
| 2019 | \end_layout |
|---|
| 2020 | |
|---|
| 2021 | \begin_layout Standard |
|---|
| 2022 | The table demonstrates the importance of the selection of |
|---|
| 2023 | \begin_inset Formula $k$ |
|---|
| 2024 | \end_inset |
|---|
| 2025 | |
|---|
| 2026 | , and the tradeoff against file size expansion. |
|---|
| 2027 | Note that the survival of exactly 9 servers is significantly less likely |
|---|
| 2028 | than the survival of 8 or 10 servers. |
|---|
| 2029 | This is, again, an artifact of the group failure modes. |
|---|
| 2030 | Because of this, there is no reason to choose |
|---|
| 2031 | \begin_inset Formula $k=9$ |
|---|
| 2032 | \end_inset |
|---|
| 2033 | |
|---|
| 2034 | over |
|---|
| 2035 | \begin_inset Formula $k=10$ |
|---|
| 2036 | \end_inset |
|---|
| 2037 | |
|---|
| 2038 | . |
|---|
| 2039 | Normally, reducing the number of shares needed for reassembly improve the |
|---|
| 2040 | file's chances of survival, but in this case it provides a minuscule gain |
|---|
| 2041 | in reliability at the cost of a 10% increase in bandwidth and storage consumed. |
|---|
| 2042 | \end_layout |
|---|
| 2043 | |
|---|
| 2044 | \begin_layout Subsection |
|---|
| 2045 | Share Duplication |
|---|
| 2046 | \end_layout |
|---|
| 2047 | |
|---|
| 2048 | \begin_layout Standard |
|---|
| 2049 | Before moving on to consider issues other than single-interval file loss, |
|---|
| 2050 | let's analyze one more possibility, that of |
|---|
| 2051 | \begin_inset Quotes eld |
|---|
| 2052 | \end_inset |
|---|
| 2053 | |
|---|
| 2054 | cheap |
|---|
| 2055 | \begin_inset Quotes erd |
|---|
| 2056 | \end_inset |
|---|
| 2057 | |
|---|
| 2058 | file repair via share duplication. |
|---|
| 2059 | \end_layout |
|---|
| 2060 | |
|---|
| 2061 | \begin_layout Standard |
|---|
| 2062 | Initially, files are split using erasure coding, which creates |
|---|
| 2063 | \begin_inset Formula $N$ |
|---|
| 2064 | \end_inset |
|---|
| 2065 | |
|---|
| 2066 | unique shares, any |
|---|
| 2067 | \begin_inset Formula $k$ |
|---|
| 2068 | \end_inset |
|---|
| 2069 | |
|---|
| 2070 | of which can be used to to reconstruct the file. |
|---|
| 2071 | When shares are lost, proper repair downloads some |
|---|
| 2072 | \begin_inset Formula $k$ |
|---|
| 2073 | \end_inset |
|---|
| 2074 | |
|---|
| 2075 | shares, reconstructs the original file and then uses the erasure coding |
|---|
| 2076 | algorithm to reconstruct the lost shares, then redeploys them to peers |
|---|
| 2077 | in the network. |
|---|
| 2078 | This is a somewhat expensive process. |
|---|
| 2079 | \end_layout |
|---|
| 2080 | |
|---|
| 2081 | \begin_layout Standard |
|---|
| 2082 | A cheaper repair option is simply to direct some peer that has share |
|---|
| 2083 | \begin_inset Formula $s_{i}$ |
|---|
| 2084 | \end_inset |
|---|
| 2085 | |
|---|
| 2086 | to send a copy to another peer, thus increasing by one the number of shares |
|---|
| 2087 | in the network. |
|---|
| 2088 | This is not as good as actually replacing the lost share, though. |
|---|
| 2089 | Suppose that more shares were lost, leaving only |
|---|
| 2090 | \begin_inset Formula $k$ |
|---|
| 2091 | \end_inset |
|---|
| 2092 | |
|---|
| 2093 | shares remaining. |
|---|
| 2094 | If two of those shares are identical, because one was duplicated in this |
|---|
| 2095 | fashion, then only |
|---|
| 2096 | \begin_inset Formula $k-1$ |
|---|
| 2097 | \end_inset |
|---|
| 2098 | |
|---|
| 2099 | shares truly remain, and the file can no longer be reconstructed. |
|---|
| 2100 | \end_layout |
|---|
| 2101 | |
|---|
| 2102 | \begin_layout Standard |
|---|
| 2103 | However, such cheap repair is not completely pointless; it does increase |
|---|
| 2104 | file survivability. |
|---|
| 2105 | But by how much? |
|---|
| 2106 | \end_layout |
|---|
| 2107 | |
|---|
| 2108 | \begin_layout Standard |
|---|
| 2109 | Effectively, share duplication simply increases the probability that |
|---|
| 2110 | \begin_inset Formula $s_{i}$ |
|---|
| 2111 | \end_inset |
|---|
| 2112 | |
|---|
| 2113 | will survive, by providing two locations from which to retrieve it. |
|---|
| 2114 | We can view the two copies of the single share as one, but with a higher |
|---|
| 2115 | probability of survival than would be provided by either of the two peers. |
|---|
| 2116 | In particular, if |
|---|
| 2117 | \begin_inset Formula $p_{1}$ |
|---|
| 2118 | \end_inset |
|---|
| 2119 | |
|---|
| 2120 | and |
|---|
| 2121 | \begin_inset Formula $p_{2}$ |
|---|
| 2122 | \end_inset |
|---|
| 2123 | |
|---|
| 2124 | are the probabilities that the two peers will survive, respectively, then |
|---|
| 2125 | \begin_inset Formula \[ |
|---|
| 2126 | Pr[s_{i}\, survives]=p_{1}+p_{2}-p_{1}p_{2}\] |
|---|
| 2127 | |
|---|
| 2128 | \end_inset |
|---|
| 2129 | |
|---|
| 2130 | |
|---|
| 2131 | \end_layout |
|---|
| 2132 | |
|---|
| 2133 | \begin_layout Standard |
|---|
| 2134 | More generally, if a single share is deployed on |
|---|
| 2135 | \begin_inset Formula $n$ |
|---|
| 2136 | \end_inset |
|---|
| 2137 | |
|---|
| 2138 | peers, each with a PMF |
|---|
| 2139 | \begin_inset Formula $f_{i}(j),0\leq j\leq1,1\leq i\leq n$ |
|---|
| 2140 | \end_inset |
|---|
| 2141 | |
|---|
| 2142 | , the share survival count is a random variable |
|---|
| 2143 | \begin_inset Formula $K$ |
|---|
| 2144 | \end_inset |
|---|
| 2145 | |
|---|
| 2146 | and the probability of share loss is |
|---|
| 2147 | \begin_inset Formula \[ |
|---|
| 2148 | Pr[K=0]=(f_{1}\star f_{2}\star\ldots\star f_{n})(0)\] |
|---|
| 2149 | |
|---|
| 2150 | \end_inset |
|---|
| 2151 | |
|---|
| 2152 | |
|---|
| 2153 | \end_layout |
|---|
| 2154 | |
|---|
| 2155 | \begin_layout Standard |
|---|
| 2156 | From that, we can construct a share PMF in the obvious way, which can then |
|---|
| 2157 | be convolved with the other share PMFs to produce the share set PMF. |
|---|
| 2158 | \end_layout |
|---|
| 2159 | |
|---|
| 2160 | \begin_layout Example |
|---|
| 2161 | Suppose a file has |
|---|
| 2162 | \begin_inset Formula $N=10,k=3$ |
|---|
| 2163 | \end_inset |
|---|
| 2164 | |
|---|
| 2165 | and that all servers have survival probability |
|---|
| 2166 | \begin_inset Formula $p=.9$ |
|---|
| 2167 | \end_inset |
|---|
| 2168 | |
|---|
| 2169 | . |
|---|
| 2170 | Given a full complement of shares, |
|---|
| 2171 | \begin_inset Formula $Pr[\textrm{file\, loss}]=3.74\times10^{-7}$ |
|---|
| 2172 | \end_inset |
|---|
| 2173 | |
|---|
| 2174 | . |
|---|
| 2175 | Suppose that four shares are lost, which increases |
|---|
| 2176 | \begin_inset Formula $Pr[\textrm{file\, loss}]$ |
|---|
| 2177 | \end_inset |
|---|
| 2178 | |
|---|
| 2179 | to |
|---|
| 2180 | \begin_inset Formula $.00127$ |
|---|
| 2181 | \end_inset |
|---|
| 2182 | |
|---|
| 2183 | , a value |
|---|
| 2184 | \begin_inset Formula $3400$ |
|---|
| 2185 | \end_inset |
|---|
| 2186 | |
|---|
| 2187 | times greater. |
|---|
| 2188 | Rather than doing a proper reconstruction, we could direct four peers still |
|---|
| 2189 | holding shares to send a copy of their share to new peer, which changes |
|---|
| 2190 | the composition of the shares from one of six, unique |
|---|
| 2191 | \begin_inset Quotes eld |
|---|
| 2192 | \end_inset |
|---|
| 2193 | |
|---|
| 2194 | standard |
|---|
| 2195 | \begin_inset Quotes erd |
|---|
| 2196 | \end_inset |
|---|
| 2197 | |
|---|
| 2198 | shares, to one of two standard shares, each with survival probability |
|---|
| 2199 | \begin_inset Formula $.9$ |
|---|
| 2200 | \end_inset |
|---|
| 2201 | |
|---|
| 2202 | and four |
|---|
| 2203 | \begin_inset Quotes eld |
|---|
| 2204 | \end_inset |
|---|
| 2205 | |
|---|
| 2206 | doubled |
|---|
| 2207 | \begin_inset Quotes erd |
|---|
| 2208 | \end_inset |
|---|
| 2209 | |
|---|
| 2210 | shares, each with survival probability |
|---|
| 2211 | \begin_inset Formula $2p-p^{2}\approxeq.99$ |
|---|
| 2212 | \end_inset |
|---|
| 2213 | |
|---|
| 2214 | . |
|---|
| 2215 | \end_layout |
|---|
| 2216 | |
|---|
| 2217 | \begin_layout Example |
|---|
| 2218 | Combining the two single-peer share PMFs with the four double-share PMFs |
|---|
| 2219 | gives a new file survival probability of |
|---|
| 2220 | \begin_inset Formula $6.64\times10^{-6}$ |
|---|
| 2221 | \end_inset |
|---|
| 2222 | |
|---|
| 2223 | . |
|---|
| 2224 | Not as good as a full repair, but still quite respectable. |
|---|
| 2225 | Also, if storage were not a concern, all six shares could be duplicated, |
|---|
| 2226 | for a |
|---|
| 2227 | \begin_inset Formula $Pr[file\, loss]=1.48\times10^{-7}$ |
|---|
| 2228 | \end_inset |
|---|
| 2229 | |
|---|
| 2230 | , which is actually three time better than the nominal case. |
|---|
| 2231 | \end_layout |
|---|
| 2232 | |
|---|
| 2233 | \begin_layout Example |
|---|
| 2234 | The reason such cheap repairs may be attractive in many cases is that distribute |
|---|
| 2235 | d bandwidth is cheaper than bandwidth through a single peer. |
|---|
| 2236 | This is particularly true if that single peer has a very slow connection, |
|---|
| 2237 | which is common for home computers -- especially in the outbound direction. |
|---|
| 2238 | \end_layout |
|---|
| 2239 | |
|---|
| 2240 | \begin_layout Section |
|---|
| 2241 | Long-Term Reliability |
|---|
| 2242 | \end_layout |
|---|
| 2243 | |
|---|
| 2244 | \begin_layout Standard |
|---|
| 2245 | Thus far, we've focused entirely on the probability that a file survives |
|---|
| 2246 | the interval |
|---|
| 2247 | \begin_inset Formula $A$ |
|---|
| 2248 | \end_inset |
|---|
| 2249 | |
|---|
| 2250 | between repair times. |
|---|
| 2251 | The probability that a file survives long-term, though, is also important. |
|---|
| 2252 | As long as the probability of failure during a repair period is non-zero, |
|---|
| 2253 | a given file will eventually be lost. |
|---|
| 2254 | We want to know the probability of surviving for time |
|---|
| 2255 | \begin_inset Formula $T$ |
|---|
| 2256 | \end_inset |
|---|
| 2257 | |
|---|
| 2258 | , and how the parameters |
|---|
| 2259 | \begin_inset Formula $A$ |
|---|
| 2260 | \end_inset |
|---|
| 2261 | |
|---|
| 2262 | (time between repairs) and |
|---|
| 2263 | \begin_inset Formula $L$ |
|---|
| 2264 | \end_inset |
|---|
| 2265 | |
|---|
| 2266 | (allowed share low watermark) affect survival time. |
|---|
| 2267 | \end_layout |
|---|
| 2268 | |
|---|
| 2269 | \begin_layout Standard |
|---|
| 2270 | To model file survival time, let |
|---|
| 2271 | \begin_inset Formula $T$ |
|---|
| 2272 | \end_inset |
|---|
| 2273 | |
|---|
| 2274 | be a random variable denoting the time at which a given file becomes unrecovera |
|---|
| 2275 | ble, and |
|---|
| 2276 | \begin_inset Formula $R(t)=Pr[T>t]$ |
|---|
| 2277 | \end_inset |
|---|
| 2278 | |
|---|
| 2279 | be a function that gives the probability that the file survives to time |
|---|
| 2280 | |
|---|
| 2281 | \begin_inset Formula $t$ |
|---|
| 2282 | \end_inset |
|---|
| 2283 | |
|---|
| 2284 | . |
|---|
| 2285 | |
|---|
| 2286 | \begin_inset Formula $R(t)$ |
|---|
| 2287 | \end_inset |
|---|
| 2288 | |
|---|
| 2289 | is the cumulative distribution function of |
|---|
| 2290 | \begin_inset Formula $T$ |
|---|
| 2291 | \end_inset |
|---|
| 2292 | |
|---|
| 2293 | . |
|---|
| 2294 | \end_layout |
|---|
| 2295 | |
|---|
| 2296 | \begin_layout Standard |
|---|
| 2297 | Most survival functions are continuous, but |
|---|
| 2298 | \begin_inset Formula $R(t)$ |
|---|
| 2299 | \end_inset |
|---|
| 2300 | |
|---|
| 2301 | is inherently discrete and stochastic. |
|---|
| 2302 | The time steps are the repair intervals, each of length |
|---|
| 2303 | \begin_inset Formula $A$ |
|---|
| 2304 | \end_inset |
|---|
| 2305 | |
|---|
| 2306 | , so |
|---|
| 2307 | \begin_inset Formula $T$ |
|---|
| 2308 | \end_inset |
|---|
| 2309 | |
|---|
| 2310 | -values are multiples of |
|---|
| 2311 | \begin_inset Formula $A$ |
|---|
| 2312 | \end_inset |
|---|
| 2313 | |
|---|
| 2314 | . |
|---|
| 2315 | During each interval, the file's shares degrade according to the probability |
|---|
| 2316 | mass function of |
|---|
| 2317 | \begin_inset Formula $K$ |
|---|
| 2318 | \end_inset |
|---|
| 2319 | |
|---|
| 2320 | . |
|---|
| 2321 | \end_layout |
|---|
| 2322 | |
|---|
| 2323 | \begin_layout Subsection |
|---|
| 2324 | Aggressive Repair |
|---|
| 2325 | \end_layout |
|---|
| 2326 | |
|---|
| 2327 | \begin_layout Standard |
|---|
| 2328 | Let's first consider the case of an aggressive repairer. |
|---|
| 2329 | Every interval, this repairer checks the file for share losses and restores |
|---|
| 2330 | them. |
|---|
| 2331 | Thus, at the beginning of each interval, the file always has |
|---|
| 2332 | \begin_inset Formula $N$ |
|---|
| 2333 | \end_inset |
|---|
| 2334 | |
|---|
| 2335 | shares, distributed on servers with various individual and group failure |
|---|
| 2336 | probabilities, which will survive or fail per the output of random variable |
|---|
| 2337 | |
|---|
| 2338 | \begin_inset Formula $K$ |
|---|
| 2339 | \end_inset |
|---|
| 2340 | |
|---|
| 2341 | . |
|---|
| 2342 | \end_layout |
|---|
| 2343 | |
|---|
| 2344 | \begin_layout Standard |
|---|
| 2345 | For any interval, then, the probability that the file will survive is |
|---|
| 2346 | \begin_inset Formula $f\left(k\right)=Pr[K\geq k]$ |
|---|
| 2347 | \end_inset |
|---|
| 2348 | |
|---|
| 2349 | . |
|---|
| 2350 | Since each interval success or failure is independent, and assuming the |
|---|
| 2351 | share reliabilities remain constant over time, |
|---|
| 2352 | \begin_inset Formula \begin{equation} |
|---|
| 2353 | R\left(t\right)=f(k)^{t}\end{equation} |
|---|
| 2354 | |
|---|
| 2355 | \end_inset |
|---|
| 2356 | |
|---|
| 2357 | |
|---|
| 2358 | \end_layout |
|---|
| 2359 | |
|---|
| 2360 | \begin_layout Standard |
|---|
| 2361 | This simple survival function makes it simple to select parameters |
|---|
| 2362 | \begin_inset Formula $N$ |
|---|
| 2363 | \end_inset |
|---|
| 2364 | |
|---|
| 2365 | and |
|---|
| 2366 | \begin_inset Formula $K$ |
|---|
| 2367 | \end_inset |
|---|
| 2368 | |
|---|
| 2369 | such that |
|---|
| 2370 | \begin_inset Formula $R(t)\geq r$ |
|---|
| 2371 | \end_inset |
|---|
| 2372 | |
|---|
| 2373 | , where |
|---|
| 2374 | \begin_inset Formula $r$ |
|---|
| 2375 | \end_inset |
|---|
| 2376 | |
|---|
| 2377 | is a user-specified parameter indicating the desired probability of survival |
|---|
| 2378 | to time |
|---|
| 2379 | \begin_inset Formula $t$ |
|---|
| 2380 | \end_inset |
|---|
| 2381 | |
|---|
| 2382 | . |
|---|
| 2383 | Specifically, we can solve for |
|---|
| 2384 | \begin_inset Formula $f\left(k\right)$ |
|---|
| 2385 | \end_inset |
|---|
| 2386 | |
|---|
| 2387 | in |
|---|
| 2388 | \begin_inset Formula $r\leq f\left(k\right)^{t}$ |
|---|
| 2389 | \end_inset |
|---|
| 2390 | |
|---|
| 2391 | , giving: |
|---|
| 2392 | \begin_inset Formula \begin{equation} |
|---|
| 2393 | f\left(k\right)\geq\sqrt[t]{r}\end{equation} |
|---|
| 2394 | |
|---|
| 2395 | \end_inset |
|---|
| 2396 | |
|---|
| 2397 | |
|---|
| 2398 | \end_layout |
|---|
| 2399 | |
|---|
| 2400 | \begin_layout Standard |
|---|
| 2401 | So, given a PMF |
|---|
| 2402 | \begin_inset Formula $f\left(k\right)$ |
|---|
| 2403 | \end_inset |
|---|
| 2404 | |
|---|
| 2405 | , to assure the survival of a file to time |
|---|
| 2406 | \begin_inset Formula $t$ |
|---|
| 2407 | \end_inset |
|---|
| 2408 | |
|---|
| 2409 | with probability at least |
|---|
| 2410 | \begin_inset Formula $r$ |
|---|
| 2411 | \end_inset |
|---|
| 2412 | |
|---|
| 2413 | , choose |
|---|
| 2414 | \begin_inset Formula $k$ |
|---|
| 2415 | \end_inset |
|---|
| 2416 | |
|---|
| 2417 | such that |
|---|
| 2418 | \begin_inset Formula $f\left(k\right)\geq\sqrt[t]{r}$ |
|---|
| 2419 | \end_inset |
|---|
| 2420 | |
|---|
| 2421 | . |
|---|
| 2422 | For example, if |
|---|
| 2423 | \begin_inset Formula $A$ |
|---|
| 2424 | \end_inset |
|---|
| 2425 | |
|---|
| 2426 | is one month, and |
|---|
| 2427 | \begin_inset Formula $r=1-\nicefrac{1}{10^{6}}$ |
|---|
| 2428 | \end_inset |
|---|
| 2429 | |
|---|
| 2430 | and |
|---|
| 2431 | \begin_inset Formula $t=120$ |
|---|
| 2432 | \end_inset |
|---|
| 2433 | |
|---|
| 2434 | , or 10 years, we calculate |
|---|
| 2435 | \begin_inset Formula $f\left(k\right)\geq\sqrt[120]{.999999}\approx0.999999992$ |
|---|
| 2436 | \end_inset |
|---|
| 2437 | |
|---|
| 2438 | . |
|---|
| 2439 | Per the PMF of table |
|---|
| 2440 | \begin_inset CommandInset ref |
|---|
| 2441 | LatexCommand ref |
|---|
| 2442 | reference "tab:Example-PMF" |
|---|
| 2443 | |
|---|
| 2444 | \end_inset |
|---|
| 2445 | |
|---|
| 2446 | , this means |
|---|
| 2447 | \begin_inset Formula $k=2$ |
|---|
| 2448 | \end_inset |
|---|
| 2449 | |
|---|
| 2450 | , achieves the goal, at the cost of a six-fold expansion in stored file |
|---|
| 2451 | size. |
|---|
| 2452 | If the lesser goal of no more than |
|---|
| 2453 | \begin_inset Formula $\nicefrac{1}{1000}$ |
|---|
| 2454 | \end_inset |
|---|
| 2455 | |
|---|
| 2456 | probability of loss is taken, then since |
|---|
| 2457 | \begin_inset Formula $\sqrt[120]{.9999}=.999992$ |
|---|
| 2458 | \end_inset |
|---|
| 2459 | |
|---|
| 2460 | , |
|---|
| 2461 | \begin_inset Formula $k=5$ |
|---|
| 2462 | \end_inset |
|---|
| 2463 | |
|---|
| 2464 | achieves the goal with an expansion factor of |
|---|
| 2465 | \begin_inset Formula $2.4$ |
|---|
| 2466 | \end_inset |
|---|
| 2467 | |
|---|
| 2468 | . |
|---|
| 2469 | \end_layout |
|---|
| 2470 | |
|---|
| 2471 | \begin_layout Subsection |
|---|
| 2472 | Repair Cost |
|---|
| 2473 | \end_layout |
|---|
| 2474 | |
|---|
| 2475 | \begin_layout Standard |
|---|
| 2476 | The simplicity and predictability of aggressive repair is attractive, but |
|---|
| 2477 | there is a downside: Repairs cost processing power and bandwidth. |
|---|
| 2478 | The processing power is proportional to the size of the file, since the |
|---|
| 2479 | whole file must be reconstructed and then re-processed using the Reed-Solomon |
|---|
| 2480 | algorithm, while the bandwidth cost is proportional to the number of missing |
|---|
| 2481 | shares that must be replaced, |
|---|
| 2482 | \begin_inset Formula $N-K$ |
|---|
| 2483 | \end_inset |
|---|
| 2484 | |
|---|
| 2485 | . |
|---|
| 2486 | \end_layout |
|---|
| 2487 | |
|---|
| 2488 | \begin_layout Standard |
|---|
| 2489 | Let |
|---|
| 2490 | \begin_inset Formula $c\left(s,d,k\right)$ |
|---|
| 2491 | \end_inset |
|---|
| 2492 | |
|---|
| 2493 | be a cost function that combines the processing cost of regenerating a |
|---|
| 2494 | file of size |
|---|
| 2495 | \begin_inset Formula $s$ |
|---|
| 2496 | \end_inset |
|---|
| 2497 | |
|---|
| 2498 | and the bandwidth cost of downloading a file of size |
|---|
| 2499 | \begin_inset Formula $s$ |
|---|
| 2500 | \end_inset |
|---|
| 2501 | |
|---|
| 2502 | and uploading |
|---|
| 2503 | \begin_inset Formula $d$ |
|---|
| 2504 | \end_inset |
|---|
| 2505 | |
|---|
| 2506 | shares each of size |
|---|
| 2507 | \begin_inset Formula $\nicefrac{s}{k}$ |
|---|
| 2508 | \end_inset |
|---|
| 2509 | |
|---|
| 2510 | . |
|---|
| 2511 | Also, let |
|---|
| 2512 | \begin_inset Formula $D$ |
|---|
| 2513 | \end_inset |
|---|
| 2514 | |
|---|
| 2515 | denote the random variable |
|---|
| 2516 | \begin_inset Formula $N-K$ |
|---|
| 2517 | \end_inset |
|---|
| 2518 | |
|---|
| 2519 | , which is the number of shares that must be redistributed to bring the |
|---|
| 2520 | file share set back up to |
|---|
| 2521 | \begin_inset Formula $N$ |
|---|
| 2522 | \end_inset |
|---|
| 2523 | |
|---|
| 2524 | after degrading during an interval. |
|---|
| 2525 | The probability mass function of |
|---|
| 2526 | \begin_inset Formula $D$ |
|---|
| 2527 | \end_inset |
|---|
| 2528 | |
|---|
| 2529 | is |
|---|
| 2530 | \begin_inset Formula \[ |
|---|
| 2531 | Pr[D=d]=f(d)=\begin{cases} |
|---|
| 2532 | Pr\left[K=N\right]+Pr[K<k] & d=0\\ |
|---|
| 2533 | Pr\left[K=N-d\right] & 0<d\leq N-k\\ |
|---|
| 2534 | 0 & N-k<d\leq N\end{cases}\] |
|---|
| 2535 | |
|---|
| 2536 | \end_inset |
|---|
| 2537 | |
|---|
| 2538 | |
|---|
| 2539 | \end_layout |
|---|
| 2540 | |
|---|
| 2541 | \begin_layout Standard |
|---|
| 2542 | The expected cost of repairs in a given interval, then, is simply |
|---|
| 2543 | \begin_inset Formula $c\left(s,E\left[D\right],k\right)$ |
|---|
| 2544 | \end_inset |
|---|
| 2545 | |
|---|
| 2546 | where E is the expected value function -- in this case: |
|---|
| 2547 | \begin_inset Formula \begin{align*} |
|---|
| 2548 | E[D] & =\sum_{d=0}^{N}d\cdot Pr\left[D=d\right]\\ |
|---|
| 2549 | & =0\cdot Pr\left[D=0\right]+\sum_{d=1}^{N-k}\left\{ d\cdot Pr\left[K=N-d\right]\right\} +\sum_{d=N-k+1}^{N}\left\{ d\cdot0\right\} \\ |
|---|
| 2550 | & =\sum_{d=1}^{N-k}d\cdot Pr\left[K=N-d\right]\end{align*} |
|---|
| 2551 | |
|---|
| 2552 | \end_inset |
|---|
| 2553 | |
|---|
| 2554 | |
|---|
| 2555 | \end_layout |
|---|
| 2556 | |
|---|
| 2557 | \begin_layout Standard |
|---|
| 2558 | Since each interval starts with a full complement of shares, the expected |
|---|
| 2559 | repair cost for each interval is the same, and the cost for file that survives |
|---|
| 2560 | for |
|---|
| 2561 | \begin_inset Formula $t$ |
|---|
| 2562 | \end_inset |
|---|
| 2563 | |
|---|
| 2564 | intervals is |
|---|
| 2565 | \begin_inset Formula $t\cdot c\left(s,E\left[D\right]\right)$ |
|---|
| 2566 | \end_inset |
|---|
| 2567 | |
|---|
| 2568 | . |
|---|
| 2569 | To calculate the lifetime repair cost, we just take the limit over all |
|---|
| 2570 | intervals as |
|---|
| 2571 | \begin_inset Formula $t\rightarrow\infty$ |
|---|
| 2572 | \end_inset |
|---|
| 2573 | |
|---|
| 2574 | , discounting each cost by the probability that the file has already failed. |
|---|
| 2575 | So, the lifetime expected repair cost is |
|---|
| 2576 | \begin_inset Formula \begin{align*} |
|---|
| 2577 | \sum_{t=1}^{\infty}R\left(t-1\right)c\left(s,E\left[D\right],k\right) & =c\left(s,E\left[D\right],k\right)\sum_{t=1}^{\infty}R\left(t-1\right)\\ |
|---|
| 2578 | & =c\left(s,E\left[D\right],k\right)\sum_{t=1}^{\infty}f\left(k\right)^{t-1}\\ |
|---|
| 2579 | & =c\left(s,E\left[D\right],k\right)\cdot\frac{1}{1-f\left(k\right)}\\ |
|---|
| 2580 | & =\frac{c\left(s,E\left[D\right],k\right)}{1-f\left(k\right)}\end{align*} |
|---|
| 2581 | |
|---|
| 2582 | \end_inset |
|---|
| 2583 | |
|---|
| 2584 | |
|---|
| 2585 | \end_layout |
|---|
| 2586 | |
|---|
| 2587 | \begin_layout Standard |
|---|
| 2588 | It is also necessary to discount future cost, since CPU and bandwidth are |
|---|
| 2589 | both going to get cheaper over time. |
|---|
| 2590 | To accommodate this, we throw in an addition per-period discount rate |
|---|
| 2591 | \begin_inset Formula $r$ |
|---|
| 2592 | \end_inset |
|---|
| 2593 | |
|---|
| 2594 | . |
|---|
| 2595 | In accordance with common discount rate usage, the discount multiplier |
|---|
| 2596 | at time |
|---|
| 2597 | \begin_inset Formula $t$ |
|---|
| 2598 | \end_inset |
|---|
| 2599 | |
|---|
| 2600 | is |
|---|
| 2601 | \begin_inset Formula $\left(1-r\right)^{t}$ |
|---|
| 2602 | \end_inset |
|---|
| 2603 | |
|---|
| 2604 | . |
|---|
| 2605 | This gives: |
|---|
| 2606 | \begin_inset Formula \begin{align*} |
|---|
| 2607 | \sum_{t=1}^{\infty}\left(1-r\right){}^{t}R\left(t-1\right)c\left(s,E\left[D\right],k\right) & =c\left(s,E\left[D\right],k\right)\sum_{t=1}^{\infty}\left(1-r\right)^{t}f\left(k\right)^{t-1}\\ |
|---|
| 2608 | & =c\left(s,E\left[D\right],k\right)\sum_{t=1}^{\infty}\left(1-r\right)^{t}f\left(k\right)^{t-1}\\ |
|---|
| 2609 | & =c\left(s,E\left[D\right],k\right)\left(1-r\right)\sum_{t=1}^{\infty}\left(1-r\right)^{t-1}f\left(k\right)^{t-1}\\ |
|---|
| 2610 | & =\frac{c\left(s,E\left[D\right],k\right)\left(1-r\right)}{1-\left(1-r\right)f\left(k\right)}\end{align*} |
|---|
| 2611 | |
|---|
| 2612 | \end_inset |
|---|
| 2613 | |
|---|
| 2614 | If |
|---|
| 2615 | \begin_inset Formula $r=0$ |
|---|
| 2616 | \end_inset |
|---|
| 2617 | |
|---|
| 2618 | this collapses to the previous result, as one would expect. |
|---|
| 2619 | \end_layout |
|---|
| 2620 | |
|---|
| 2621 | \begin_layout Subsection |
|---|
| 2622 | Non-aggressive Repair |
|---|
| 2623 | \end_layout |
|---|
| 2624 | |
|---|
| 2625 | \begin_layout Standard |
|---|
| 2626 | Need to write this. |
|---|
| 2627 | \end_layout |
|---|
| 2628 | |
|---|
| 2629 | \begin_layout Section |
|---|
| 2630 | Time-Sensitive Retrieval |
|---|
| 2631 | \end_layout |
|---|
| 2632 | |
|---|
| 2633 | \begin_layout Standard |
|---|
| 2634 | The above work has almost entirely ignored the distinction between availability |
|---|
| 2635 | and reliability. |
|---|
| 2636 | \end_layout |
|---|
| 2637 | |
|---|
| 2638 | \begin_layout Standard |
|---|
| 2639 | Need to write this. |
|---|
| 2640 | \end_layout |
|---|
| 2641 | |
|---|
| 2642 | \end_body |
|---|
| 2643 | \end_document |
|---|