| 1 | """ |
|---|
| 2 | Algorithms for figuring out happiness, the number of unique nodes the data is |
|---|
| 3 | on. |
|---|
| 4 | |
|---|
| 5 | Ported to Python 3. |
|---|
| 6 | """ |
|---|
| 7 | |
|---|
| 8 | from queue import PriorityQueue |
|---|
| 9 | |
|---|
| 10 | |
|---|
| 11 | def augmenting_path_for(graph): |
|---|
| 12 | """ |
|---|
| 13 | I return an augmenting path, if there is one, from the source node |
|---|
| 14 | to the sink node in the flow network represented by my graph argument. |
|---|
| 15 | If there is no augmenting path, I return False. I assume that the |
|---|
| 16 | source node is at index 0 of graph, and the sink node is at the last |
|---|
| 17 | index. I also assume that graph is a flow network in adjacency list |
|---|
| 18 | form. |
|---|
| 19 | """ |
|---|
| 20 | bfs_tree = bfs(graph, 0) |
|---|
| 21 | if bfs_tree[len(graph) - 1]: |
|---|
| 22 | n = len(graph) - 1 |
|---|
| 23 | path = [] # [(u, v)], where u and v are vertices in the graph |
|---|
| 24 | while n != 0: |
|---|
| 25 | path.insert(0, (bfs_tree[n], n)) |
|---|
| 26 | n = bfs_tree[n] |
|---|
| 27 | return path |
|---|
| 28 | return False |
|---|
| 29 | |
|---|
| 30 | def bfs(graph, s): |
|---|
| 31 | """ |
|---|
| 32 | Perform a BFS on graph starting at s, where graph is a graph in |
|---|
| 33 | adjacency list form, and s is a node in graph. I return the |
|---|
| 34 | predecessor table that the BFS generates. |
|---|
| 35 | """ |
|---|
| 36 | # This is an adaptation of the BFS described in "Introduction to |
|---|
| 37 | # Algorithms", Cormen et al, 2nd ed., p. 532. |
|---|
| 38 | # WHITE vertices are those that we haven't seen or explored yet. |
|---|
| 39 | WHITE = 0 |
|---|
| 40 | # GRAY vertices are those we have seen, but haven't explored yet |
|---|
| 41 | GRAY = 1 |
|---|
| 42 | # BLACK vertices are those we have seen and explored |
|---|
| 43 | BLACK = 2 |
|---|
| 44 | color = [WHITE for i in range(len(graph))] |
|---|
| 45 | predecessor = [None for i in range(len(graph))] |
|---|
| 46 | distance = [-1 for i in range(len(graph))] |
|---|
| 47 | queue = [s] # vertices that we haven't explored yet. |
|---|
| 48 | color[s] = GRAY |
|---|
| 49 | distance[s] = 0 |
|---|
| 50 | while queue: |
|---|
| 51 | n = queue.pop(0) |
|---|
| 52 | for v in graph[n]: |
|---|
| 53 | if color[v] == WHITE: |
|---|
| 54 | color[v] = GRAY |
|---|
| 55 | distance[v] = distance[n] + 1 |
|---|
| 56 | predecessor[v] = n |
|---|
| 57 | queue.append(v) |
|---|
| 58 | color[n] = BLACK |
|---|
| 59 | return predecessor |
|---|
| 60 | |
|---|
| 61 | def residual_network(graph, f): |
|---|
| 62 | """ |
|---|
| 63 | I return the residual network and residual capacity function of the |
|---|
| 64 | flow network represented by my graph and f arguments. graph is a |
|---|
| 65 | flow network in adjacency-list form, and f is a flow in graph. |
|---|
| 66 | """ |
|---|
| 67 | new_graph = [[] for i in range(len(graph))] |
|---|
| 68 | cf = [[0 for s in range(len(graph))] for sh in range(len(graph))] |
|---|
| 69 | for i in range(len(graph)): |
|---|
| 70 | for v in graph[i]: |
|---|
| 71 | if f[i][v] == 1: |
|---|
| 72 | # We add an edge (v, i) with cf[v,i] = 1. This means |
|---|
| 73 | # that we can remove 1 unit of flow from the edge (i, v) |
|---|
| 74 | new_graph[v].append(i) |
|---|
| 75 | cf[v][i] = 1 |
|---|
| 76 | cf[i][v] = -1 |
|---|
| 77 | else: |
|---|
| 78 | # We add the edge (i, v), since we're not using it right |
|---|
| 79 | # now. |
|---|
| 80 | new_graph[i].append(v) |
|---|
| 81 | cf[i][v] = 1 |
|---|
| 82 | cf[v][i] = -1 |
|---|
| 83 | return (new_graph, cf) |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | def calculate_happiness(mappings): |
|---|
| 87 | """ |
|---|
| 88 | :param mappings: a dict mapping 'share' -> 'peer' |
|---|
| 89 | |
|---|
| 90 | :returns: the happiness, which is the number of unique peers we've |
|---|
| 91 | placed shares on. |
|---|
| 92 | """ |
|---|
| 93 | unique_peers = set(mappings.values()) |
|---|
| 94 | assert None not in unique_peers |
|---|
| 95 | return len(unique_peers) |
|---|
| 96 | |
|---|
| 97 | |
|---|
| 98 | def _calculate_mappings(peers, shares, servermap=None): |
|---|
| 99 | """ |
|---|
| 100 | Given a set of peers, a set of shares, and a dictionary of server -> |
|---|
| 101 | set(shares), determine how the uploader should allocate shares. If a |
|---|
| 102 | servermap is supplied, determine which existing allocations should be |
|---|
| 103 | preserved. If servermap is None, calculate the maximum matching of the |
|---|
| 104 | bipartite graph (U, V, E) such that: |
|---|
| 105 | |
|---|
| 106 | U = peers |
|---|
| 107 | V = shares |
|---|
| 108 | E = peers x shares |
|---|
| 109 | |
|---|
| 110 | Returns a dictionary {share -> set(peer)}, indicating that the share |
|---|
| 111 | should be placed on each peer in the set. If a share's corresponding |
|---|
| 112 | value is None, the share can be placed on any server. Note that the set |
|---|
| 113 | of peers should only be one peer when returned, but it is possible to |
|---|
| 114 | duplicate shares by adding additional servers to the set. |
|---|
| 115 | """ |
|---|
| 116 | peer_to_index, index_to_peer = _reindex(peers, 1) |
|---|
| 117 | share_to_index, index_to_share = _reindex(shares, len(peers) + 1) |
|---|
| 118 | shareIndices = [share_to_index[s] for s in shares] |
|---|
| 119 | if servermap: |
|---|
| 120 | graph = _servermap_flow_graph(peers, shares, servermap) |
|---|
| 121 | else: |
|---|
| 122 | peerIndices = [peer_to_index[peer] for peer in peers] |
|---|
| 123 | graph = _flow_network(peerIndices, shareIndices) |
|---|
| 124 | max_graph = _compute_maximum_graph(graph, shareIndices) |
|---|
| 125 | return _convert_mappings(index_to_peer, index_to_share, max_graph) |
|---|
| 126 | |
|---|
| 127 | |
|---|
| 128 | def _compute_maximum_graph(graph, shareIndices): |
|---|
| 129 | """ |
|---|
| 130 | This is an implementation of the Ford-Fulkerson method for finding |
|---|
| 131 | a maximum flow in a flow network applied to a bipartite graph. |
|---|
| 132 | Specifically, it is the Edmonds-Karp algorithm, since it uses a |
|---|
| 133 | BFS to find the shortest augmenting path at each iteration, if one |
|---|
| 134 | exists. |
|---|
| 135 | |
|---|
| 136 | The implementation here is an adapation of an algorithm described in |
|---|
| 137 | "Introduction to Algorithms", Cormen et al, 2nd ed., pp 658-662. |
|---|
| 138 | """ |
|---|
| 139 | |
|---|
| 140 | if graph == []: |
|---|
| 141 | return {} |
|---|
| 142 | |
|---|
| 143 | dim = len(graph) |
|---|
| 144 | flow_function = [[0 for sh in range(dim)] for s in range(dim)] |
|---|
| 145 | residual_graph, residual_function = residual_network(graph, flow_function) |
|---|
| 146 | |
|---|
| 147 | while augmenting_path_for(residual_graph): |
|---|
| 148 | path = augmenting_path_for(residual_graph) |
|---|
| 149 | # Delta is the largest amount that we can increase flow across |
|---|
| 150 | # all of the edges in path. Because of the way that the residual |
|---|
| 151 | # function is constructed, f[u][v] for a particular edge (u, v) |
|---|
| 152 | # is the amount of unused capacity on that edge. Taking the |
|---|
| 153 | # minimum of a list of those values for each edge in the |
|---|
| 154 | # augmenting path gives us our delta. |
|---|
| 155 | delta = min(residual_function[u][v] for (u, v) in path) |
|---|
| 156 | for (u, v) in path: |
|---|
| 157 | flow_function[u][v] += delta |
|---|
| 158 | flow_function[v][u] -= delta |
|---|
| 159 | residual_graph, residual_function = residual_network(graph,flow_function) |
|---|
| 160 | |
|---|
| 161 | new_mappings = {} |
|---|
| 162 | for shareIndex in shareIndices: |
|---|
| 163 | peer = residual_graph[shareIndex] |
|---|
| 164 | if peer == [dim - 1]: |
|---|
| 165 | new_mappings.setdefault(shareIndex, None) |
|---|
| 166 | else: |
|---|
| 167 | new_mappings.setdefault(shareIndex, peer[0]) |
|---|
| 168 | |
|---|
| 169 | return new_mappings |
|---|
| 170 | |
|---|
| 171 | |
|---|
| 172 | def _extract_ids(mappings): |
|---|
| 173 | shares = set() |
|---|
| 174 | peers = set() |
|---|
| 175 | for share in mappings: |
|---|
| 176 | if mappings[share] == None: |
|---|
| 177 | pass |
|---|
| 178 | else: |
|---|
| 179 | shares.add(share) |
|---|
| 180 | for item in mappings[share]: |
|---|
| 181 | peers.add(item) |
|---|
| 182 | return (peers, shares) |
|---|
| 183 | |
|---|
| 184 | def _distribute_homeless_shares(mappings, homeless_shares, peers_to_shares): |
|---|
| 185 | """ |
|---|
| 186 | Shares which are not mapped to a peer in the maximum spanning graph |
|---|
| 187 | still need to be placed on a server. This function attempts to |
|---|
| 188 | distribute those homeless shares as evenly as possible over the |
|---|
| 189 | available peers. If possible a share will be placed on the server it was |
|---|
| 190 | originally on, signifying the lease should be renewed instead. |
|---|
| 191 | """ |
|---|
| 192 | #print("mappings, homeless_shares, peers_to_shares %s %s %s" % (mappings, homeless_shares, peers_to_shares)) |
|---|
| 193 | servermap_peerids = set([key for key in peers_to_shares]) |
|---|
| 194 | servermap_shareids = set() |
|---|
| 195 | for key in sorted(peers_to_shares.keys()): |
|---|
| 196 | # XXX maybe sort? |
|---|
| 197 | for share in peers_to_shares[key]: |
|---|
| 198 | servermap_shareids.add(share) |
|---|
| 199 | |
|---|
| 200 | # First check to see if the leases can be renewed. |
|---|
| 201 | to_distribute = set() |
|---|
| 202 | for share in homeless_shares: |
|---|
| 203 | if share in servermap_shareids: |
|---|
| 204 | for peerid in peers_to_shares: |
|---|
| 205 | if share in peers_to_shares[peerid]: |
|---|
| 206 | mappings[share] = set([peerid]) |
|---|
| 207 | break |
|---|
| 208 | else: |
|---|
| 209 | to_distribute.add(share) |
|---|
| 210 | # This builds a priority queue of peers with the number of shares |
|---|
| 211 | # each peer holds as the priority. |
|---|
| 212 | priority = {} |
|---|
| 213 | pQueue = PriorityQueue() |
|---|
| 214 | for peerid in servermap_peerids: |
|---|
| 215 | priority.setdefault(peerid, 0) |
|---|
| 216 | for share in mappings: |
|---|
| 217 | if mappings[share] is not None: |
|---|
| 218 | for peer in mappings[share]: |
|---|
| 219 | if peer in servermap_peerids: |
|---|
| 220 | priority[peer] += 1 |
|---|
| 221 | if priority == {}: |
|---|
| 222 | return |
|---|
| 223 | for peerid in priority: |
|---|
| 224 | pQueue.put((priority[peerid], peerid)) |
|---|
| 225 | # Distribute the shares to peers with the lowest priority. |
|---|
| 226 | for share in to_distribute: |
|---|
| 227 | peer = pQueue.get() |
|---|
| 228 | mappings[share] = set([peer[1]]) |
|---|
| 229 | pQueue.put((peer[0]+1, peer[1])) |
|---|
| 230 | |
|---|
| 231 | def _convert_mappings(index_to_peer, index_to_share, maximum_graph): |
|---|
| 232 | """ |
|---|
| 233 | Now that a maximum spanning graph has been found, convert the indexes |
|---|
| 234 | back to their original ids so that the client can pass them to the |
|---|
| 235 | uploader. |
|---|
| 236 | """ |
|---|
| 237 | |
|---|
| 238 | converted_mappings = {} |
|---|
| 239 | for share in maximum_graph: |
|---|
| 240 | peer = maximum_graph[share] |
|---|
| 241 | if peer == None: |
|---|
| 242 | converted_mappings.setdefault(index_to_share[share], None) |
|---|
| 243 | else: |
|---|
| 244 | converted_mappings.setdefault(index_to_share[share], set([index_to_peer[peer]])) |
|---|
| 245 | return converted_mappings |
|---|
| 246 | |
|---|
| 247 | |
|---|
| 248 | def _servermap_flow_graph(peers, shares, servermap): |
|---|
| 249 | """ |
|---|
| 250 | Generates a flow network of peerIndices to shareIndices from a server map |
|---|
| 251 | of 'peer' -> ['shares']. According to Wikipedia, "a flow network is a |
|---|
| 252 | directed graph where each edge has a capacity and each edge receives a flow. |
|---|
| 253 | The amount of flow on an edge cannot exceed the capacity of the edge." This |
|---|
| 254 | is necessary because in order to find the maximum spanning, the Edmonds-Karp algorithm |
|---|
| 255 | converts the problem into a maximum flow problem. |
|---|
| 256 | """ |
|---|
| 257 | if servermap == {}: |
|---|
| 258 | return [] |
|---|
| 259 | |
|---|
| 260 | peer_to_index, index_to_peer = _reindex(peers, 1) |
|---|
| 261 | share_to_index, index_to_share = _reindex(shares, len(peers) + 1) |
|---|
| 262 | graph = [] |
|---|
| 263 | indexedShares = [] |
|---|
| 264 | sink_num = len(peers) + len(shares) + 1 |
|---|
| 265 | graph.append([peer_to_index[peer] for peer in peers]) |
|---|
| 266 | #print("share_to_index %s" % share_to_index) |
|---|
| 267 | #print("servermap %s" % servermap) |
|---|
| 268 | for peer in peers: |
|---|
| 269 | if peer in servermap: |
|---|
| 270 | for s in servermap[peer]: |
|---|
| 271 | if s in share_to_index: |
|---|
| 272 | indexedShares.append(share_to_index[s]) |
|---|
| 273 | graph.insert(peer_to_index[peer], indexedShares) |
|---|
| 274 | for share in shares: |
|---|
| 275 | graph.insert(share_to_index[share], [sink_num]) |
|---|
| 276 | graph.append([]) |
|---|
| 277 | return graph |
|---|
| 278 | |
|---|
| 279 | |
|---|
| 280 | def _reindex(items, base): |
|---|
| 281 | """ |
|---|
| 282 | I take an iteratble of items and give each item an index to be used in |
|---|
| 283 | the construction of a flow network. Indices for these items start at base |
|---|
| 284 | and continue to base + len(items) - 1. |
|---|
| 285 | |
|---|
| 286 | I return two dictionaries: ({item: index}, {index: item}) |
|---|
| 287 | """ |
|---|
| 288 | item_to_index = {} |
|---|
| 289 | index_to_item = {} |
|---|
| 290 | for item in items: |
|---|
| 291 | item_to_index.setdefault(item, base) |
|---|
| 292 | index_to_item.setdefault(base, item) |
|---|
| 293 | base += 1 |
|---|
| 294 | return (item_to_index, index_to_item) |
|---|
| 295 | |
|---|
| 296 | |
|---|
| 297 | def _flow_network(peerIndices, shareIndices): |
|---|
| 298 | """ |
|---|
| 299 | Given set of peerIndices and a set of shareIndices, I create a flow network |
|---|
| 300 | to be used by _compute_maximum_graph. The return value is a two |
|---|
| 301 | dimensional list in the form of a flow network, where each index represents |
|---|
| 302 | a node, and the corresponding list represents all of the nodes it is connected |
|---|
| 303 | to. |
|---|
| 304 | |
|---|
| 305 | This function is similar to allmydata.util.happinessutil.flow_network_for, but |
|---|
| 306 | we connect every peer with all shares instead of reflecting a supplied servermap. |
|---|
| 307 | """ |
|---|
| 308 | graph = [] |
|---|
| 309 | # The first entry in our flow network is the source. |
|---|
| 310 | # Connect the source to every server. |
|---|
| 311 | graph.append(peerIndices) |
|---|
| 312 | sink_num = len(peerIndices + shareIndices) + 1 |
|---|
| 313 | # Connect every server with every share it can possibly store. |
|---|
| 314 | for peerIndex in peerIndices: |
|---|
| 315 | graph.insert(peerIndex, shareIndices) |
|---|
| 316 | # Connect every share with the sink. |
|---|
| 317 | for shareIndex in shareIndices: |
|---|
| 318 | graph.insert(shareIndex, [sink_num]) |
|---|
| 319 | # Add an empty entry for the sink. |
|---|
| 320 | graph.append([]) |
|---|
| 321 | return graph |
|---|
| 322 | |
|---|
| 323 | def share_placement(peers, readonly_peers, shares, peers_to_shares): |
|---|
| 324 | """ |
|---|
| 325 | Generates the allocations the upload should based on the given |
|---|
| 326 | information. We construct a dictionary of 'share_num' -> |
|---|
| 327 | 'server_id' and return it to the caller. Existing allocations |
|---|
| 328 | appear as placements because attempting to place an existing |
|---|
| 329 | allocation will renew the share. |
|---|
| 330 | |
|---|
| 331 | For more information on the algorithm this class implements, refer to |
|---|
| 332 | docs/specifications/servers-of-happiness.rst |
|---|
| 333 | """ |
|---|
| 334 | if not peers: |
|---|
| 335 | return dict() |
|---|
| 336 | |
|---|
| 337 | # First calculate share placement for the readonly servers. |
|---|
| 338 | readonly_shares = set() |
|---|
| 339 | readonly_map = {} |
|---|
| 340 | for peer in sorted(peers_to_shares.keys()): |
|---|
| 341 | if peer in readonly_peers: |
|---|
| 342 | readonly_map.setdefault(peer, peers_to_shares[peer]) |
|---|
| 343 | for share in peers_to_shares[peer]: |
|---|
| 344 | readonly_shares.add(share) |
|---|
| 345 | |
|---|
| 346 | readonly_mappings = _calculate_mappings(readonly_peers, readonly_shares, readonly_map) |
|---|
| 347 | used_peers, used_shares = _extract_ids(readonly_mappings) |
|---|
| 348 | |
|---|
| 349 | # Calculate share placement for the remaining existing allocations |
|---|
| 350 | new_peers = set(peers) - used_peers |
|---|
| 351 | # Squash a list of sets into one set |
|---|
| 352 | new_shares = shares - used_shares |
|---|
| 353 | |
|---|
| 354 | servermap = peers_to_shares.copy() |
|---|
| 355 | for peer in sorted(peers_to_shares.keys()): |
|---|
| 356 | if peer in used_peers: |
|---|
| 357 | servermap.pop(peer, None) |
|---|
| 358 | else: |
|---|
| 359 | servermap[peer] = set(servermap[peer]) - used_shares |
|---|
| 360 | if servermap[peer] == set(): |
|---|
| 361 | servermap.pop(peer, None) |
|---|
| 362 | # allmydata.test.test_upload.EncodingParameters.test_exception_messages_during_server_selection |
|---|
| 363 | # allmydata.test.test_upload.EncodingParameters.test_problem_layout_comment_52 |
|---|
| 364 | # both ^^ trigger a "keyerror" here .. just ignoring is right? (fixes the tests, but ...) |
|---|
| 365 | try: |
|---|
| 366 | new_peers.remove(peer) |
|---|
| 367 | except KeyError: |
|---|
| 368 | pass |
|---|
| 369 | |
|---|
| 370 | existing_mappings = _calculate_mappings(new_peers, new_shares, servermap) |
|---|
| 371 | existing_peers, existing_shares = _extract_ids(existing_mappings) |
|---|
| 372 | |
|---|
| 373 | # Calculate share placement for the remaining peers and shares which |
|---|
| 374 | # won't be preserved by existing allocations. |
|---|
| 375 | new_peers = new_peers - existing_peers - used_peers |
|---|
| 376 | |
|---|
| 377 | |
|---|
| 378 | new_shares = new_shares - existing_shares - used_shares |
|---|
| 379 | new_mappings = _calculate_mappings(new_peers, new_shares) |
|---|
| 380 | #print("new_peers %s" % new_peers) |
|---|
| 381 | #print("new_mappings %s" % new_mappings) |
|---|
| 382 | mappings = dict(list(readonly_mappings.items()) + list(existing_mappings.items()) + list(new_mappings.items())) |
|---|
| 383 | homeless_shares = set() |
|---|
| 384 | for share in mappings: |
|---|
| 385 | if mappings[share] is None: |
|---|
| 386 | homeless_shares.add(share) |
|---|
| 387 | if len(homeless_shares) != 0: |
|---|
| 388 | # 'servermap' should contain only read/write peers |
|---|
| 389 | _distribute_homeless_shares( |
|---|
| 390 | mappings, homeless_shares, |
|---|
| 391 | { |
|---|
| 392 | k: v |
|---|
| 393 | for k, v in list(peers_to_shares.items()) |
|---|
| 394 | if k not in readonly_peers |
|---|
| 395 | } |
|---|
| 396 | ) |
|---|
| 397 | |
|---|
| 398 | # now, if any share is *still* mapped to None that means "don't |
|---|
| 399 | # care which server it goes on", so we place it on a round-robin |
|---|
| 400 | # of read-write servers |
|---|
| 401 | |
|---|
| 402 | def round_robin(peers): |
|---|
| 403 | while True: |
|---|
| 404 | for peer in peers: |
|---|
| 405 | yield peer |
|---|
| 406 | peer_iter = round_robin(peers - readonly_peers) |
|---|
| 407 | |
|---|
| 408 | return { |
|---|
| 409 | k: v.pop() if v else next(peer_iter) |
|---|
| 410 | for k, v in list(mappings.items()) |
|---|
| 411 | } |
|---|